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Abstract: The paper deals with the control of nonlinear processes with 2DOF-PI controllers. A new and 
practical tuning method, based on recent ideas of immersion and invariance, is proposed for the dynamic 
adjustment of the set-point weight.  The main attractive feature of the proposal is the possibility of 
assigning a reduced-order linear dynamics for the tracking response beyond the nonlinear characteristics 
of the process and the amplitude of the set-point changes. From a practical point of view the adjustment is 
performed by a simple sliding mode regime that accepts a straightforward implementation. 
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1. INTRODUCTION 
 
Even though new and more powerful tools have been 
developed, PI/PID control is still the most used control 
strategy in industrial applications. An attractive feature of 
these controllers is their relatively simple and intuitive 
design. Moreover, the fixed structure of PID controllers has 
made possible the development of ready-made hardware 
modules and software packages for a quick and easy 
implementation (Li et al., 2006). For these reasons, PI/PID 
controllers are commonly preferred even though more 
aggressive controllers can be obtained with more 
sophisticated techniques. Their popularity has encouraged 
the formulation of a large number of methods for tuning the 
controller gains. Over the years, several modifications to 
the standard algorithm have been proposed with the aim of 
improving the performance of PID controllers. One of these 
alternative structures is the so-called PID with set-point 
weighting or two degree of freedom PID (2DOF-PID). The 
advantage of the 2DOF-PID structure is that responses of 
the system to both disturbances and changes in the set-point 
can be adjusted separately. This characteristic results 
especially useful when the controller must accomplish 
several simultaneous specifications (Åström & Hagglund, 
2005).  
 
The effects of set-point weighting are rather intuitive in 
most of the simple processes. For this reason, empirical 
tuning methods are extensively used.  Several methods with 

theoretical support have also been proposed for both SISO 
and MIMO processes (O'Dwyer, 2006), between them  
some approaches include  dynamic weighting  to 
improve the tracking behaviour  (Dey,  2006;  Hang & Cao, 
1996), as well as to limit the coupling  between variables in  
MIMO  systems  (Åström & Johansson,  2002;  Bianchi et 
al., 2008).  Up-to-date references of the most popular 
methods for tuning 2DOF-PID can be found in O’Dwyer 
(2006) and Mudi & Dey (2011). 
 
This paper deals with the dynamic set-point weighting of 
2DOF-PI controllers in nonlinear processes.  It is worthy to 
point out that, in nonlinear processes, a suitable weight 
coefficient for a given set-point could be inappropriate for 
other reference values. Additionally, constant values for the 
weight coefficient in all nonlinear range of operation could 
drive to excessively conservative behaviours. Then, when 
the process is complex and/or highly nonlinear, variable 
weights should be considered. While in many works, this 
problem is addressed from a process of linearization 
(Bianchi et al., 2008), here the problem is focused using 
concepts from the theory of nonlinear systems. More 
precisely, with concepts of immersion of  systems and  
invariance  manifolds  (Astolfi, A.  & Ortega, R., 2003).  In 
this framework a new methodology to the dynamic tuning 
of the set-point weight is presented. The proposal allows to 
assign a reduced-order linear dynamics for the tracking 
response independently of the set-point change. From a 
practical position the adjustment is performed by a simple 
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sliding mode regime that accepts a  straightforward 
implementation. 
 
The paper is organized as follows. Section 2 briefly reviews 
the basic concepts of immersion of systems and invariant 
manifolds. In section 3, a new proposal for the dynamic 
adjustment of the set-point weight of 2DOF-PI controllers for 
nonlinear processes is presented.  Then, the main features of 
the proposal are validated through an example. Finally, 
conclusions are summarized. 
 

 
2. BASIC CONCEPTS OF IMMERSION AND 

INVARIANCE 
 

Immersion and invariance concepts have always been 
linked to the control theory of nonlinear systems. The 
idea of immersion, is usually associated with the 
transformation of a system into another with specific 
properties.  It has been used,  for example,  to the 
linearization of nonlinear systems by state feedback  
(Isidori, A., 1995), for robust regulation (Byrnes, C. et al, 
1997), stabilization of  infinite dimensional  systems  
(Michel, A ., 2001), for interpretation  of the Lyapunov  
method, etc..  In turn, the notion of invariant manifold has 
been extensively used to infer control actions in nonlinear 
systems. 
 
Based on these two concepts, Astolfi et al. (2008) have 
formalized a theoretical framework called Immersion and 
Invariance (I&I) that reduces the design problem of 
nonlinear controllers to subproblems which might be 
substantially easier to solve and that do not require 
knowledge of Lyapunov functions.   Although I&I ideas are 
applied to a wide range of problems, it is conceptually 
clearer to introduce them in the context of a stabilization 
issue. To this end, consider the nonlinear system, 
 

( ) ( )x f x g x u= +ɺ  (1) 

 

with nx∈ℝ  and mu∈ℝ , and where we are interested in  
getting a feedback control law ( )u v x=  so that the 

controlled system presents an asymptotically stable 
equilibrium at the origin. Based on classical notions of 
system immersion and manifold invariance, the problem 
can be addressed by finding: 
1- a target system with reduced-order dynamics 
 

( )ζ α ζ=ɺ            ,p nζ <∈ℝ  (2) 
 

asymptotically stable at the origin; 
2- a smooth mapping 

( )x π ζ= , (3) 

3- a state feedback control ( )u v x=  such that 

( )(0) (0)xπ ζ = ,     (4)            

(0) 0π = ,                (5)       

( )( ) ( )( ) ( )( ) ( ).f g v
ππ ζ π ζ π ζ α ζ
ζ

∂+ =
∂

 (6) 

If the previous problem can be solved, any state trajectory x 

 of the closed loop system can be seen as a mapping π  of a 
trajectory ζ  of the target system. As this target system is 

asymptotically stable at the equilibrium, x(t) converges to 
the origin.  From a geometric point of view all closed loop 
trajectories x(t) live in the invariant manifold  
 

{ }( ),n p nM x x π ζ ζ <= ∈ = ∈ℝ ℝ  (7) 

 
with internal dynamics ( )ζ α ζ=ɺ . 

 
Although this formulation is theoretically correct, it is not 
always practical since both the mapping  ( )x π ζ=  and the 

control ( )u v x= depend on the initial conditions, which 

complicates the calculus (indeed, in many applications, it 
could be impossible to be solved).  From a practical 
standpoint, these limitations can be overcome by I&I ideas 
determining a solution for (5) and (6) (i.e. without  
requiring (4)), and modifying the control action  ( )u v x=  

such that  M  is attractive, i.e., for any initial condition,  
the system trajectories  x(t) of the closed loop system  
 

( ) ( ) ( )x f x g x v x= +ɺ  (8)  

 
converge to the manifold M.  The attractiveness of  M  is 
defined  in terms of a distance function ξ1 whose absolute 
value 
 

1 ( , )dist x Mξ =  (9) 

   
must be reduced to zero. This signal can be defined in 
different ways,  which gives  an  additional degree of 
freedom to design.  
 
 
3.  DYNAMIC SET-POINT WEIGHTING BASED ON 

CONCEPTS OF I&I AND SM 
 
Consider the nonlinear process 
 

( ) ( )x f x g x u= +ɺ  (9)         

( )y h x=                                          
 

where the state variables are measured online or can be 
estimated by a state observer, and the 2DOF-PI controller 

 

( ´ ) ( )i
p

p

k
u k r y r y dt

k

 
= − + − 

  
∫                                          (10) 

 
where r´=r.b(t)  is the weighted set-point for the 
proportional control action, and kp and ki are the 
proportional and integral gains, which have been tuned for 
the proper rejection of perturbations in the vicinity of y=r.  
 
We are interested in adjusting the weight b(t) in such a way 
that the tracking closed-loop response has a reduced-order 
linear dynamics. As it will be shown, both the order of the 
dominant tracking dynamics and the corresponding 
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eigenvalues can be chosen without major difficulty from 
the basic I&I ideas. However, for ease of presentation, it is 
first introduced the case in which a first-order tracking 
dynamics is specified.  
 
Then, according to what was previously discussed in 
section 2, we can solve the problem finding a ‘control 
action’ b(t) to achieve asymptotic immersion of the closed-
loop tracking dynamics in a subspace of ℝ ,  
 

{ }( ),n
M x x π ζ ζ= ∈ = ∈ℝ ℝ  (11) 

 
being ζ(t)=y(t), and where the invariant manifold is 
parameterized by the solutions of 
 

0y y rλ λ λ= − + >ɺ . (12) 

 
A distance between the actual state trajectory x(t) and M 
can be defined as  
 

1( ) ( , ) ( ) ( )f gux dist x M L h x h x rξ λ λ+= = + − . (13) 

 
Depending on the process nonlinear characteristics, model 
uncertainties and disturbances, the  determination of the 
law of adjustment b(t)=v(x) may present some difficulties.  
In this paper we propose to force the attractiveness of M via 
a simple sliding mode (SM) regime which adjusts  b(t).  
Fig. 1 illustrates the scheme of the 2DOF-PI control with  a 
detail of the proposed tuning circuit for the weight b(t).   
 
Since the SM is implemented at the level of the set-point, 
chattering  problems  are completely negligible.  On the 
other hand, the  SM is easy to implement  and gives 
greater robustness than other methods. 
 
The resulting discontinuous signal w(t) is employed to 
shape the weighted reference r.b(t) through a first-order 
low-pass filter F(s): 
 

( )f f f f

f

x x w r

r x

λ λ= − + +
′ =

ɺ
  (14) 

 
where -λf is the filter eigenvalue. The choice of this  
eigenvalue  is not critical since its effect is cancelled by the 
SM regime. Naturally, this eigenvalue must be chosen for 
the filter bandwidth to be much faster than the target 
dynamic system.  
 
To provide the present proposal with theoretical support it 
is useful to reformulate the system model in the normal 
form considering the variable ξ1(x(t))  as the first state, 
which will be zeroed by the action of the discontinuous 
signal w(t). Then, if the relative degree of ξ1(x(t)) with 
respect to w(t) is ρ, we proceed to model the complete 
system  (n +2 states:  n states of the open-loop system, one 
of the PI controller and the remaining state due to the filter 
F) from the following state variables: 
 

 

  
 

Fig.1:  scheme of the 2DOF-PI control with the proposed  
tuning circuit for the weight  b(t). 
 

( )

1

2 1

x

e

n x

x
ρ

ρ

ξ
η + −

 
=  
 

, (15) 

 

with 
 

1

1
1

22
11

21
1

( )

( )

( )

( )

f

fx

n

f

x
y

L x

L x

L x

ρ

ρρ

ξ
ηξ

η
ξξ η

η
ξ + −−

 
=  

  
  = =
  
  
   

  

⋮
⋮

.      (16) 

 
That is, the elements of the first subset of ρ states are the 
signal ξ1(x) and its ρ-1 successive derivatives. The 
surplus states  η  can be freely chosen. For simplicity,   
the first state (η1)  of the set η is chosen as the variable y(t). 
Then, the new closed loop model results 
  

1 2

2 3

1

1 ( )

1 1 1 1

2 2 2

2 2 2

( ) ( ) ( )

( , ) ( , ) ( )

( , ) ( , )

( , ) ( , )

f gu x

n n n

L x a b w

q p w y x y r

q p w

q p w

ρ ρ

ρ ρ ξ

ρ ρ ρ

ξ ξ
ξ ξ

ξ ξ
ξ ξ ξ ξ

η ξ η ξ η ξ λ λ
η ξ η ξ η

η ξ η ξ η

−

+ − =Φ

+ − + − + −

 =
 

= 
 
 

= 
 

= = + 
 

= + = = − + 
 = +
 
 
 = +  

ɺ

ɺ

⋮

ɺ

ɺ

ɺ ɺ

ɺ

⋮

ɺ

 .    (17) 

 
being our objective to force the fast convergence of the 
output ξ1(t) to zero. To this end, i.e. to warrantee the 
attractiveness of M and, as a consequence, the practical 
asymptotic immersion of the tracking dynamic response in 
the target system, it is proposed a sliding mode regime on 
the control surface 
 

1 1 2 2 3 3( ) ..... 0s k k k kρ ρξ ξ ξ ξ ξ= + + + + =  (18) 

 
where the coefficients ki define the convergence dynamics 
of ξ1 to zero (Utkin et al., 1999; Garelli et al., 2011). 
 

r 
y(t) 

- 
 

b(t) 

+

  

w 

s(ξ) x(t) 
 

-

kp 
 
 

 ki/s 

  F 

Nonlinear 

Process 
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The selected surface s(ξ) has  relative degree ρ=1 with 
respect to the signal  w(t)  fulfilling the condition of 
existence of the sliding motion.  Then it is always possible 
to choose  w+ and w- high enough for guaranteeing the SM.  
These extreme values can be calculated from necessary and 
sufficient condition for the sliding mode regime: 
 

( )eqw w t w− +≤ ≤  (19)

  
where weq(t) is the equivalent control (i.e. the fictitious 
continuous signal that produce the same effect than the 
actual discontinuous signal w(t) on the sliding surface) 
calculated from the invariance SM conditions  

 
( ) 0 ( ) 0s sξ ξ= =ɺ .                     (20) 

 
However, as the discontinuous control action w(t)  is used 
here to shape the changes of the reference, then it is 
reasonable to choose values of the order of the set-point 
changes for w±  (taking into account bounds on possible 
disturbances). It should be also pointed out that the 
selection of w± can be made in a conservative manner 
because the SM is restricted to the low-power side of the 
system.  
 
Once achieved the sliding regime results, 
 

1 1 2 2 3 3 1 1

1
( ..... )k k k k

k
ρ ρ ρ

ρ

ξ ξ ξ ξ ξ− −= − + + + +         (21) 

 
then substituting (21) in (17), the reduced-order state model 
(order n+1) is obtained 
 

1

1 2

2 3

1 1 1 2 2 3 3 1 1

1

( )

2 2 2

2 2 2

1
( ..... )

( )

( , ) ( , )

( , ) ( , )

f gu

x

n n n

k k k k
k

y L h x y r y r

q p w

q p w

ρ ρ ρ ρ
ρ

ξ

ρ ρ ρ

ξ ξ
ξ ξ

ξ ξ ξ ξ ξ ξ

η λ λ λ λ

η ξ η ξ η

η ξ η ξ η

− − −

+

+ − + − + −

 =
 

= 
 
 
 = = − + + + + 
 
 
 

= = + − − + 
 
 = + 
 
 

= +  

ɺ

ɺ

⋮

ɺ

ɺ ɺ
���������

ɺ

⋮

ɺ

.                  (22)     

 
where the extinction speed of the new controlled output  ξ1     
is defined by a linear dynamics whose eigenvalues  are 
assigned by the proper selection of the ki coefficients.  
Then, if these coefficients are chosen so that ξ states present 
a fast dynamics compared to the ones corresponding to the 
target system (defined by the eigenvalue λ),  the dynamic 
equation of state η1, approaches to: 
   

 
1

1

( ) 0

1

( )f gu

x

y L h x y r y r

y y r

ξ

η λ λ λ λ

η λ λ

+

→

= = + − − +

= → − +

ɺ ɺ
���������

ɺ ɺ

          (23)                

that is, the target dynamics. Obviously, all the remaining  
states dynamics ηi  must meet the stability requirements (i.e. 
minimum phase zero dynamics).   
 
Observation 1.  Note that the tracking objective is achieved 
in an indirect form conditioning the signal r.b(t) for zeroing 
the distance  ξ1  between the trajectory x(t) and the manifold 
M. Then, the proposed adjusting action could be interpreted 
as a special case of SM reference conditioning (Mantz and 
De Battista, 2002; Garelli et al., 2011).  Note also that (23) 
is one of the zero dynamics. 
 
Observation 2.  An analytic expression of b(t) can be 
obtained from  
 

( )( )
( ) eqr w t

b t
r

ξ+
=  (24) 

 
where ( )( )eqw tξ  is the equivalent control.  However (24) 

has only theoretical value, because it is not required for the 
implementation of the present proposal. The adjustment of 
b(t) is forced by the SM of the basic circuit of Fig. 1 
without need of calculating it. 
 
Observation 3.  Previously, it was considered the 
asymptotic immersion of the tracking response in a target 
manifold parameterized by the trajectories of a first order 
dynamics. The extension of the previous ideas to the 
general case with higher order dynamics is straightforward. 
Indeed, it is enough: 
1) to choose a new manifold parameterized by the solutions 
of the target tracking dynamics 
 

2 1

1 1 1( )
m m m

m my a y a y a y a r
− −

−= − + + + +⋯  (25) 

 
with m<n+2-ρ, and a signal ξ1  defining a distance between 
the actual state trajectory x(t) and M for example  
 

1

1 1 1( ) ( , ) ( )
m

m

f gu mx dist x M L h x a y a y a rξ
−

+= = + + + −⋯ ; (26) 

 
2) to modify (22) in such a way that the first m states of η 
are the variable y(t) and its successive m-1 derivatives, i.e. 
          

1

1

2

1 1

1 1 1 1

( ) 0

( ) ( )
m m m

m

m f gu m m

x

y

y

y L h x a y a y a r a y a y a r

ξ

η
η

η
− −

+

→

=
=

= = + + + − − + + +

ɺ

⋮

⋯ ⋯
���������������

 
3) and to force the trajectories to converge asymptotically 
to M by a SM regime as (18). 
 
Then, the zero dynamics verifies the target tracking 
dynamics (25). 
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1 2

2 3

1 1m m ma a

η η
η η

η η η

=
=

= + +

ɺ

ɺ

⋮

ɺ ⋯

          (28) 

 
 

4. EXAMPLE 
 

Consider the nonlinear system 
 

[ ]

2
2 2 1

2

0,1 ( )

1 0

x sig x x
x

x u

y x

 −
=  − + 

=

ɺ ,                        (29) 

 
and a PI controller with variable set-point weighting (10), 
where the gains  ki=0,657 and  kp=8,9 have been tuned from 
the linearized model (in the proximity of the steady state 
point of regulation) for the proper rejection of 
perturbations. In this case, the disturbance rejection has a 
characteristic close to that known as "quarter decay" which 
is considered adequate for many chemical processes (it is 
important to keep in mind that the present proposal is 
independent of the PI gains tuning). Obviously, due 
to the nonlinear characteristics of the system, this type of 
response is not obtained in other operation points without 
the suitable readjustment of the controller gains.  Fig. 2 
shows, in thin lines, the dynamic behaviour of the closed 
loop system considering constant values of b (1; .9; .8; .7; 
.6; .5 and .1).  It is observed a clear trade off between 
overshoot and large settling time.  These poor nonlinear 
tracking responses contrast with the proper disturbance 
rejection. This result is not surprising since the PI 
controller was tuned based on a  linearized model that is 
only valid  on the surrounding of the steady state point. 
 
The dynamics of the closed loop system, including the filter 
F, is given by the next differential equations 
 

2
2 2 1

1

2 2 1

1

0,1 ( )

( )

( )

i
p F i

p

i

F

F F

x sig x x
x

k
x x k x x x

k
x

r x
x

x w rλ

 −
  

    − + − +    =     
   −

    
+ +  

ɺ

ɺ

ɺ

ɺ

.            (30)        

 
 

We propose as target tracking dynamics 
 

.2 .2r rζ λζ λ ζ= − + = − +ɺ     (31)      

 
with yζ =  and a signal  

 
2

1 2 2 1( ) 0,1 ( )x x sig x x y rξ λ λ= − + −  (32) 

 
as a measure between the actual trajectories and the 
manifold defined from the solutions of the target dynamics 
(31). This signal 

1ξ  has relative degree 2ρ =  with respect 

to the discontinuous signal w(t). Then its absolute value can 
be reduced in a controlled way forcing a sliding mode on 
the surface                 
 

1 1 2 2( ) ( ) ( ) 0s k x k xξ ξ ξ= + =  (33) 

 
with k1/k2>>λ to guarantee a convergence speed faster than 
corresponding to the selected for the tracking response. In 
the present case we choose k1/k2=2  (i.e. the time constant 
of the extinction speed of 

1ξ  ten times less than the 

corresponding to the target dynamics  λ-1 = 5sec). 
 
Fig. 2 (thick line) and 3a show the response of the non 
linear process with the 2DOF-PI controller with the 
proposed dynamic weighting. From a practical point of 
view, this tracking response presents the target dynamics 
(31) with a much better performance than any of the 
corresponding to constant weights.  This fact can also be 
verified from Fig. 3c, which shows how ξ1 converges to 
zero with the dynamic assigned through the choice of k1/k2 
(time constant 0.5sec). As a consequence, it results  
 

1

2
2 2 1

( ) 0

0,1 ( ) .
x

y x sig x x y r y r y r

ξ

λ λ λ λ λ λ
→

= − + − − + ⇒ − +ɺ
�������������

 

 (34) 
Part b of the Fig. 3 shows the weight coefficient b(t) that 
guarantees the desired behaviour. In terms of I&I, this is 
the control that assures the trajectories convergence to  M 

where  the dynamics (31) is verified. 

 
Fig. 2: Process output.  Thin lines: 2DOF-PI with constant 
b values .1,.5, .6, .7, .8, .9 and 1. Thick line: 2DOF-PI with 
b(t) based on I&I ideas. 
 
Fig. 4 shows the trajectory corresponding to the thick 
curve in Fig. 2  in the ( , )y yɺ  plane.  Three sections can be 

distinguished. The first section A-B corresponds to the fast 
dynamics of ξ1.   Subsequently, the B-C straight with slope 
-0.2 is consistent with the dynamic assigned for the tracking 
response (first-order linear dynamics), and the third  part of 
the trajectory shows the underdamped  dynamics 
corresponding to the disturbance  rejection (third-order  
nonlinear dynamics) which is exclusively defined by the PI 
gains. 
 
Note that the sliding surface  

1 1 2 2( ) ( ) ( ) 0s k x k xξ ξ ξ= + =  is 

the same  regardless of  the tuning of the  PI  gains.  
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Therefore, if  the nonlinear system operates  with 
different set-points,  which could require different  ki and kp 
settings to the proper disturbances rejection,  no changes 
would be required for the implementation of the proposed 
tracking method.  
 

 
Fig. 3: a) set-point tracking response, b) set-point weight 
b(t),  c) distance ξ1 between  x(t) trajectories and M. 

 

 
 
Fig. 4: Trajectory in the ( , )y yɺ  plane in correspondence 

with thick line in Fig. 2.  
 
 

5. CONCLUSION 
 

PI with set-point weighting or two degree of freedom PI 
controllers (2DOF-PI) are widely used in industrial 
environments. Although lots of heuristic rules and analytic 
methods have been proposed for the tuning of these 
controllers,  little  has been written that explicitly deals with 
nonlinear processes. In this case, suitable weight 
coefficients for the tracking of a given set-point can be 
inappropriate for other set-points values.  This fact 
encourages the formulation of 2DOF-PI with variable 

weights.  In this paper, a new method for dynamic tuning of 
the weight b(t) is proposed for the tracking control of 
nonlinear processes. The technique proposed is supported 
by recent concepts of system immersion and invariant 
manifolds, which have shown to be useful for reducing  
the complexity of various problems of analysis and 
design in nonlinear systems. The distinctive characteristic 
of the tuning method proposed in this paper is the 
possibility of assigning a reduced-order linear dynamics for 

the tracking response.  From a practical position, the 
proposal is easily implemented by a simple circuit 
operating in a sliding mode regime, making it suitable for 
industrial application.  Other attractive characteristic of the 
proposal is its independence with respect to the set-point 
amplitude. 
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