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Abstract: In this paper an extension of the Matlab-tool PIDrobust is presented. This tool
calculates the entire set of PID controllers that stabilizes a set of linear systems with time
delay simultaneously. On this basis an iteratively algorithm is used to improve o-stability in
order to assist operators. At the end of the process the operator is able to judge the results
and interactively choose a controller. This tool needs much less computational effort than other
optimization methods and achieves similar performance. It is can also be used for tuning robust
controllers by means of the parameter space approach.
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1. INTRODUCTION

PID controllers have a wide acceptance in the industry
because around 90% of the existing processes can be sta-
bilized and controlled using SISO-PID-Controllers (Koivo
and Tanttu (1991)). For instance, in the process industry
more than 95% of the controllers use the PID control strat-
egy (Astrém and Hagglund (2005)). It has been stated that
the popularity of PID controllers relies on the intuitive
three terms that characterize their performance (one for
the proportional term k,, one for the integral term k; and
one for the derivative term k4), on their long history and
on the easy introduction of new capabilities like adaption,
self-tuning and gain scheduling into PID control (Knospe
(2006)).

Nevertheless, the performance of these controllers is often
far away of being optimal and the main reason of this
problem is the wrong tuning of the controllers (Ender
(1993)). The deficiency lies surely not within the lack
of tuning rules or methodologies. The popularity of PID
control as a research area is rather growing (O’Dwyer
(2003)). One of the most used and at the same time one
of the oldest methods of tuning PID controllers are the
classic laws of thumb by Ziegler and Nichols (Ziegler and
Nichols (1942)). For an overview of the tuning methods the
reader is referred to Astrom and Héigglund (2005); Datta
et al. (2000); Tan et al. (1999).

It has been suggested that the reasons of poorly tuned
parameters are the lack of knowledge among operators and
commissioning personnel, generic tuning methods that do
not match with the specific process needs and the large
variety of PID structures, which leads to errors during the
application of tuning rules (Oviedo et al. (2006)). One of
the main problems is the tuning of the derivative term,
which in 80% of the cases is switched off or completely
omitted (Digest (1996)).

Therefore, the necessity of developing a tool that is easy
to operate and with an effective approach for tuning the
parameters arises. The Matlab-tool PIDrobust presents a
new alternative (Hohenbichler (2009b)). It overcomes some
typical limitations of other methods for their applicability
in the industry. It can handle any linear plant with time
delay and can deal with more than one design criterion.
Furthermore, parametric uncertainties can be taken into
account.

This method is based on finding the set of all the sta-
bilizing PID controllers (SSC) for a linear plant model.
This idea was first presented in Datta et al. (2000) and it
was also shown that for a fixed k, the set of all stabilizing
controllers consists of convex polygons in the (kq,k;)-plane.
In Ackermann and Kaesbauer (2003) the same result was
derived using a different approach, the parameter space
approach (Ackermann (2002)). The notion of singular fre-
quencies was introduced. Each singular frequency gives rise
to a straight line boundary in the (kg4,k;)-plane, ie. at a
singular frequency a pair of roots crosses the imaginary
axis. Subsequently, the theory of finding the SSC has been
generalized for systems with time delay (Hohenbichler and
Ackermann (2003a,b)).

In this paper, the Matlab-tool PIDrobust has been ex-
tended by the idea in Weller and Ackermann (2009), which
exposes the possibility of automatic improvement of o-
stability as a support for the synthesis of PID controllers
based on the SSC. The o-stability test can be treated as
a stability test using a transformation presented in Ack-
ermann and Kaesbauer (2003). This extension of Matlab-
tool PIDrobust is thought as a support for the operators
for tuning the PID controllers. At the end of the process
the operator should be able to judge the results, as a better
o-value not always yields to a better performance of the
controller. Therefore, the evaluation of the controller is
done in the preferred representation of the operator using
the LTIviewer of Matlab, e.g. impulse and step responses,
zero-pole-map, Nyquist or Bode plots.
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The remainder of this paper is organized as follows. In
the next section, the problem is stated. In Section 3 the
calculation of the SSC is recapitulated. The algorithm to
iteratively improve o-stability is presented in Section 4. In
Section 5 some examples are presented to show how the
Matlab-tool works and to demonstrate its performance.
Finally, in Section 6 the results of this paper are summa-
rized.

2. PROBLEM STATEMENT

w ki+kps+kas? JA(s) —Ls y
s(14+Ts) R(s) € "
PID controller Plant

Fig. 1. System structure

In this paper, the system seen in Figure 1 is considered. It
consists of a PID controller
kgs? + kys+ k;
PID(s) = ——2~ "% 1
Y ) e
and a linear plant with time delay and unknown but
constant parameters q
A
(87 q) e_LS. (2)

Gloq)= R(s,q)

The characteristic function of the closed-loop is
P(S, q) = (kl + kps + kdsz)A(sa q) + B(s’ q)eLs ) (3)
———

B(s,q)

where L > 0 is the time delay and A(s,q) and B(s,q) are
polynomials with real coefficients

A(s,q) : = ao(q) + a1(q)s + ... + am(q)s™, am # 0,
B(s,q):=s(1+T.s)R(s,q) (4)
=bo(q) + b1(q)s + ... + b(q)s™, b, #0.
The uncertain parameters, including the time delay, are
specified in an operating domain

Q={aILe L0 ac a7 ]}, ©)

where ()~ and (-)™ mean lower and upper bounds respec-
tively. To take the uncertain parameters into account the
parameter space approach is used. The approach consists
of two steps. The first one is the controller synthesis step,
where the set of controllers that stabilize a finite number
of plant representatives, e.g. the vertices of @, is searched.
The second step is the robustness verification. For a given
controller the stability region in the plant’s parameter
space should enclose @ entirely. In this paper we will focus
on the controller synthesis and thus consider (L,q)? as
fixed values. For the analysis of the second step the reader
is referred to Hohenbichler and Abel (2006); Ackermann
(2002); Silva et al. (2005).

3. SET OF ALL STABILIZING PID CONTROLLERS

In the following, the calculation of the SSC in the con-
troller parameter space (kq,k:, kp)T is explained. It is
based on finding the stability boundaries in the (kq-k;)-
plane for a fixed k, and on finding the stability-enabling
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kp intervals. This approach has the advantage that this in-
tervals can be calculated using the function k, = f(w), see
(6). Furthermore, in the (kq-k;)-plane stability boundaries
are straight lines and thus computationally favorable. In
this paper, the first step will be summarized and for details
on the second step the reader is referred to Hohenbichler
(2009a). In the next section, the Hurwitz stability case is
treated and subsequently the o-stability case.

3.1 Hurwitz stability

A property of the considered system with time delay is
that (3) is a quasipolynomial and thus has an infinite
number of roots. The closed loop is Hurwitz stable if all
the roots lie in the open left half plane (LHP) and large
roots do not approach the imaginary axis asymptotically
(Bellman and Cooke (1963)). Furthermore, it is required
that [ := n—m > 2 because of the principal term condition
(Pontryagin (1955)). This is assumed in the following.
In order to calculate stability regions in the parameter
space, the root boundaries are searched, i.e. where a root
crosses the imaginary axis. There exist three types of such
boundaries:

e real root boundaries (RRB) s =0,
e complex root boundaries (CRB) s = +jw,
e and infinite root boundaries (IRB) s = oco.

For the following description of the boundaries, the auxil-
iary functions

fw) = fi(w)sin(wL) + fa(w)cos(wL) (6)
9(w) = w (— fo(w)sin(wl) + fi(@)oswL))  (7)
are defined, where
—RARp — I41p IaRp — Ralp
= ——— = (8
fl(w) CU(R124+1124) 7f2(w) w(Ri+If‘) ( )
R and I denote the real and imaginary parts of the
polynomials. For further details on the derivation see
Hohenbichler (2009b).
The RRB is found by inserting s = 0 in (3)
P(0) =k;A(0)+ B(0) =0
which leads to
_b
an '
Thus, a RRB exists for ag # 0.
For finding the CRBs the characteristic polynomial P(s)

is divided in real and imaginary parts. Hence, the require-
ment for a root at s = jw can be expressed

Ra —w?Ra\ (ki Ry —kywla) _ (0
(1,4 —w21A> (kd>+<13+kprA =lo) ()
N e

S

k= (10)

in matrix form. Only positive values of w are taken into
account as the roots are always complex conjugates. For
fixed k, and w the matrix Sy is singular. Thus, the linear
equation system (11) can only be solved if

Ry RgfkprA o
d6t<IA Ié-f—kprA =0.

This equation can be brought to the form

kp = f(w)7

(12)

(13)
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whose positive solutions are the singular frequencies wy,.
The set of all singular frequencies is denoted as 2. Subse-
quently, inserting (13) in (11) leads to

ki = wlka + g(wy) (14)
a straight line, the CRB, with positive slope in the (k4,k;)-
plane for each singular frequency.

In the case of a delay-free system, the number of CRBs is
finite and thus the stability region consists of a set of con-
vex polygons. Furthermore, the characteristic polynomial
P(s) has a root at |s| = oo if its largest coefficient
by , for 1 > 2,
bn + amkq , for l =2
equals 0. As b, # 0 and a,, # 0, this happens only for
Il = 2. The IRB is then
bn,
kg =——

am

(15)

(16)

For analyzing the systems with time delay, an infinite
number of CRBs must be managed (see (13)) and therefore
the concept of root chains is used. Root chains describe the
asymptotic behavior of large roots. Hence, the set of large
singular frequencies is defined as

Qu, i ={w, € Q| wy >w},
which depends on a chosen fix wj.

(17)

In Hohenbichler (2009b) it is shown that an w; exists so
that, for large singular frequencies, the absolute value of
the intersection points of the CRBs of w, € €, with the

f’ , for [ = 2,

n
m

kq-axis approaches oo, for [ > 2, and to

strictly monotonically.

Because of this kinematic of the CRBs and the fact that
their slope increases with w? as shown in (14), it can be
proved that a singular frequency w; exists so that the
CRBs corresponding to larger frequencies do not change
the stable region in the case of a retarded system with
time delay (L > 0, I > 2) (Hohenbichler (2009b)). Thus,
if a stable region exits it is composed of a set of convex
polygons.

In the case of neutral systems, i.e. [ = 2, it is possible
that the CRBs of large singular frequencies do not affect
the stable region but this is not always true. In these
cases the stable region is the limit of a sequence of convex
polygons and can be approximated conservatively by a
set of convex polygons. The approximation error can be
approximated and reduced arbitrarily by taking CRBs of
higher frequencies into account (Hohenbichler (2009a)).

Furthermore, in the case I = 2 IRBs exist. For large s the
characteristic polynomial P(s) can be approximated by

ﬁ(s) = kgams™ + bys"e*t
= 5" (kqam, + bpe®™)
and the real part of the roots
kaanm,
da ) . (19)

aoo—Ln ™

can be found. Therefore, if a stable region exists it lies
within the lines

(18)

bn

m

|k‘d‘ < . (20)
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As these boundaries represent the crossing of an infinite
number of roots at the imaginary axis, no stable region
exists outside this lines.

In this section it was shown that the RRB (10), the CRBs
(14) and the IRBs (16) and (20) are straight lines in the
(k4-k;)-plane. Thus, the stable region is formed by a set of
convex polygons or can be approximated by one.

3.2 o-stability

o-stability means that all the poles of the closed-loop lie
left from a parallel to the imaginary axis straight line. This
line is located at the chosen o value. In Ackermann and
Kaesbauer (2003) the transformation

(21)
is given, which maps the straight line at o( in the s-plane

to the imaginary axis of the v-plane. Thus, by applying
this transformation to the characteristic function (3)

P'(v) = [(ki + kpoo + kdog) + (kp + 2kqoo) v + k:dv2] .
A+ 00) + B (v+ o)

the o-stability of P(s) can be treated as the stability
of P’(v). Furthermore, as P’(v) can be brought to an
equivalent structure of (3) through

K. = k; + kpoo + kqol
k;, = kp + 2kq00 ,
Kl =kq ,
A'(v) = A(v + 09) ,
B'(v) := B(v+00) ,
the computation of the set of all o-stabilizing PID con-

trollers can be analogously treated with the methods pre-
sented in Section 3.1.

S:=v—+ o0y

(22)

4. ITERATIVE ¢ - IMPROVEMENT

aS -

Fig. 2. Automatic iterative o - improvement

Step 1 Step 2-5 Step 6

The control design process proposed in this paper consist
of an automatic iterative o-improvement and an analysis
done by the operator about the effects of this improve-
ment, e.g. the impact on other design criteria. A scheme of
the automatic algorithm, based on Weller and Ackermann
(2009), can be seen in Figure 2:

(1) Initialization: the initial value of o9 = 0 is set. This
is equivalent to Hurwitz stability. Furthermore, the
parameters o-tolerance and the maximum number of
iterations are also set. These parameters are used to
control the break of the loop.

(2) Calculate the o-stable region: first the k,-grid is
computed. Subsequently, for each k, and each plant
the stable region in the (kg,k;)-plane is computed.
The stable regions are composed of convex polygons.

(3) Calculate the polygons’ intersection: for each k, the
intersection of the stable regions of all the plants
is computed. The intersection is also composed of
convex polygons.
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(4) Calculate centers of gravity: the centers of gravity of
each polygon are computed. The center of gravity of
each polygon is the most robust point in the sense,
that it is the most distant point in the polygon to the
stability boundaries.

(5) Calculate the new o value: the oy value is computed
for every center of gravity, which corresponds to the
worst og value of all plants. This guarantees that
the real part of the roots of all plants lie left from
00. Subsequently, the best of value of all centers of
gravity is selected as the basis for the next iteration
step, i.e. the most negative one.

(6) Controller selection: the user selects a controller, e.g.
the center of gravity corresponding the o value at the
last iteration step. Subsequently, the closed-loop can
be analyzed with e.g. Nyquist plots, step responses,
impulse responses, Bode plots or zero-pole-maps. The
tool provides also the possibility of comparing the o-
best PID controllers of each iteration.

The iteration loop breaks if the maximum number of
iterations is exceeded or if o-tolerance > |J{§i -0} Z-71|.

5. EXAMPLES

In this section two examples are presented in order to show
the performance of the PIDrobust program. The following
example is a linear plant with time delay

1

Gy(s) = ——— e * 23

() = (029 (23)
presented in Astrom and Hégglund (2000) as one of the
20 benchmark plants. For the first five iterations of the
o-iteration process, the parameters of the best controllers
are given in Table 1, assuming 7;. = 0. Furthermore, the
parameters of a controller tuned by the software package
PIDEasy are listed. PIDEasy uses automatic simulations
to search globally for controllers that meet five given
design objectives (Li et al. (2006)).

Table 1. Example 1 - Controllers’ parameters

PID Parameters Resultant Margins

Iteration oo kp k; kq GM PM(°)
1 -0.926 | 0.552 | 0.890 | 0.133 | 2.052 50.470
2 -1.377 | 0.467 | 0.688 | 0.102 | 2.453 60.942
3 -1.626 | 0.404 | 0.616 | 0.077 | 2.700 63.082
4 -1.786 | 0.368 | 0.576 | 0.064 | 2.880 64.128
5 -1.884 | 0.337 | 0.549 | 0.056 | 3.015 64.827
PIDEasy | -1.350 0.3 0.509 | 0.051 | 3.311 65.8

Figure 3 shows the step response of the closed-loop using
the controllers found by the o-iteration algorithm. It can
be seen that the step response is improved every iteration,
i.e. with a better oy value. In Figure 4, the step response
of the closed-loop is plotted using the last controller of the
o-improvement algorithm and the one tuned by PIDEasy.
It can be seen that the step responses are similar, but the
one found by the o-improvement algorithm has a better
settling time. For instance, depending on the overshoot’s
restrictions, the controller found in the third iteration
could be an alternative.

In the last example, it can be seen that the performance
of the PID controller that can be achieved with the o-
improvement algorithm is similar to other tuning meth-
ods. Most of the methods for tuning PID controllers are
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Step Response

14

Iteration 1
Iteration 2
Iteration 3 |
Iteration 4
Iteration 5 | |

Amplitude

Time [s]
Fig. 3. Example 1 - step response
Step Response

PIDEasy

Amplitude
S
>

0.4+ —— — Iteration 5 |
0.2 ]
0 !
0 1 5 6

Time [s]
Fig. 4. Example 1 - step responses’ comparison

based on maximizing or minimizing some properties of the
closed-loop for one plant. The method presented in this
paper distinguishes from the other methods because it is
capable to handle this process for more than one plant
using the same controller.

This allows to tune a controller that is robust against pa-
rameter uncertainty using the parameter space approach.
For example, the following plant

—0.55* — 783 —25+1
s0 + 118% + qr8* + 9583 + 10952 + 74s + 24

is given in Hohenbichler (2009b) with the nominal value
q1 = 46. It is assumed that the uncertain parameter ¢; may
vary within the following operating domain ¢; € [40, 50].
It is searched for a controller that stabilizes the plant
robustly. Therefore, we calculate the set of controllers that
can stabilize the two plants representing the vertices of the
operating domain, which is in this case one-dimensional.
In Figure 5, the stable region and the centers of gravity
are shown in the parameter space for these two plants.
Plant 1 corresponds to ¢; = 40 and plant 2 corresponds to
g1 = 50. The intersection of the two regions represents
the set of controllers that can stabilize the two plants
simultaneously.

—0.08s

Gs(s) =

In Table 2 the resulting controllers are listed along with
the corresponding gain and phase margins for every plant.
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Table 2. Example 2 - controllers’ parameters

PID Parameters
Iter. oo kp k; kq
1 -0.101 2.724 3.773 -0.336
2 -0.182 3.252 3.386 1.056
3 -0.230 3.707 2.925 1.449
4 -0.256 3.766 2.709 1.561
5 -0.271 3.749 2.595 1.603
Resultant Margins

GM1 | PM1(°) | GM2 | PM2(°)
1 1.737 50.25 1.425 50.27
2 1.893 56.41 1.658 56.42
3 1.548 63.00 1.603 63.01
4 1.458 65.74 1.599 65.74
5 1.432 67.08 1.611 67.08

I Plant 2 - stability

—194 I Plant 1 - stability
—9204
54
0+
&&
_5\
—104
—154
—204 //
10
5 _ 0
0~ —30 —20 —10
ki kd

Fig. 5. Example 2 - PID parameter space

The oy value corresponds to the plant with the worst g
value that is achieved with the controller. It can be seen
that improving the oy value does not always leads to an
improvement of the gain or phase margins.

I Plant 2 - o-stability
B Plant 1 - o-stability

k.
w
THN0 W Tt W

Fig. 6. Example 2 - PID parameter space, oy = —0.25642

In Figure 6 the o-stable region of the fifth iteration is
shown in the parameter space for the two plants. In Figures
7 and 8 the variation of the step responses during the
optimization process can be seen for every plant. As long
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as the intersection of the o-stable regions is not empty,
there exists a controller that o-stabilizes the two plants
simultaneously. It is denoted that the procedure used in
this example for stabilizing two plants simultaneously can
be extended without any limitations to a higher number
of plants.

Having explored examples that show the potential of the
tuning method presented in this work, the next section
summarizes the paper and gives a perspective of future
work based on the presented results.

Step Response

1.2
1 ................................. —

0.8}
° 0.6 Iteration 1
=l Iteration 2
é’ 0.47 —-—— - Iteration 3
E‘O ob pVE Iteration 4
<% ' Iteration 5

0 5 10 15 Qb 25 30 35 40
Time [s]

Fig. 7. Example 2 - step responses of plant 1

Step Response
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)
g 0.6} Tteration 1
Z04) Iteration 2
g‘ ——— - Iteration 3
= o2r fthyooo === - Tteration 4
Iteration 5
0
—0.2
—0.4
—0.6 : : : ‘ : ‘ : : :
0 5 10 15 20 25 30 35 40 45 50

Time [s

Fig. 8. Example 2 - step responses of plant 2

6. CONCLUSION

In this paper, the approach of a robust semi-automatic
design for PID controllers has been presented. This ap-
proach is based on calculating the set of all stabilizing
PID controllers in the parameter space for a given linear
plant with time delay. This is done by gridding k, and
calculating the stable convex polygons in the (k4,k;)-plane.

It is a robust design in so far as the approach can find
controllers that stabilize more than one plant simultane-
ously. In this way parameter uncertainties can be handled.
This is done by intersecting the stable polygons of all the
plants in order to find the set of all PID controllers that
stabilizes all the plants. This set is then the basis for the
o-improvement algorithm.
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The o-stability case can be treated analogously to the
stability case using the mapping given in (21) and the
parameter transformation given in (22). During the o-
improvement algorithm first the centers of gravity of all
polygons are calculated. Subsequently, the corresponding
oo values are computed and the best one is the basis for
the next iteration step. Then the process is carried on by
calculating the og-stable region.

This approach is semi-automatic because after the o-
improvement process the operator is able to judge the
resulting closed-loop and choose the best suitable con-
troller. For this purpose, the Matlab’s analyzing tool LTI-
viewer is used. This is convenient as the performance of the
closed-loop is not only characterized by the o-stability but
other requirements should also be taken into consideration.
This evaluation can be performed faster and easier if it is
done by the operator, e.g. using graphical information like
the step response of the closed-loop. In the Matlab-tool
PIDrobust this is implemented interactively.

Future work can be made using the same principle of
the o-improvement algorithm for improving other criteria.
Instead of calculating the oy value of the centers of
gravity, the gain and phase margins could be used. Other
possibilities are the circle-stability for delay-free systems
and the large roots location for systems with time delay as
presented in Hohenbichler (2009b). Furthermore, a multi-
criteria improvement process can be achieved. This cannot
be done using only a polygon intersection because the
(ka,k;)-planes of all the criteria may not be parallel, but a
polyhedra intersection function could be used instead.

Further research can be made in analyzing the improve-
ment potential of the optimization process for unbounded
regions. Currently, the algorithm calculates the centers
of gravity of the polygons that are plotted in case that
unbounded regions are found. Hence, the defined bounding
box used for the plot has an influence in the centers of
gravity and thus in the improvement algorithm.

The method presented in this paper has some advantages
compared to the plenty of methods available nowadays.
One of these advantages is that this method is able to
handle more than one plant at the same time. Another
advantage is that the kind of plants that can be analyzed
is not restricted to a limited group but all linear plants
with and without time delay can be treated. Moreover,
in this work the robust semi-automatic design for PID
controllers has been implemented in such a way that the
user can use the tool intuitively without understanding
the underlying mathematical basis. Finally, the compu-
tational effort is less than a global optimization as the
stability boundaries are directly computed. The presented
extension of PIDrobust is published at www.irt.rwth-
aachen.de/en/fuer-studierende/downloads/pidrobust/.
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