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Abstract: In this paper, an online adaptation scheme for tuning of PID parameters is presented.
This scheme is based upon our previous works on using a data-driven method to obtain a
sufficient condition for robust stability and integrating robustness into the Unfalsified Control
framework. Here, a modified bumpless transfer approach to facilitate the adaptation of the
PID controller parameters is presented. The proposed scheme is demonstrated using a PID
benchmark problem.
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1. INTRODUCTION

A promising adaptive control approach is the Unfalsified
Control, see Safonov and Tsao (1997). The key feature
of this approach is the fact that very little knowledge
about the plant is required a priori. Thus it can be
easily applied to a large class of systems. Adaptation in
Unfalsified Control is done by switching among a set of
candidate controllers via the ε-hysteresis algorithm from
Morse et al. (1992). In the original approach Wang et al.
(2007), the so-called fictitious signals were used to evaluate
the performance of the candidate controllers by means of
a cost function.

However, as indicated by Dehghani et al. (2007) and
Engell et al. (2007) the original cost function does not
detect destabilizing controllers before they are placed in
the control loop. An alternative cost function was proposed
in Engell et al. (2007) which solved this problem.

To improve the set of candidate controllers, Engell et al.
(2007) suggested to use this new cost function and the data
recorded from measured signals in an online optimization
to search for an optimal candidate controller. This idea has
recently been extended to include a robustness constraint,
which is only derived from the measurements data, to
the optimization of the candidate controller parameters
to obtain robust controllers. Also this condition is used
to avoid non-robust controllers from been placed in the
control loop, see Nabati and Engell (2010) and Nabati and
Engell (2011).

This paper presents the application of our robust adaptive
control scheme to online tuning of PID parameters. Here,
an improved version of the bumpless transition approach
of Cheong and Safonov (2008) to facilitate the adaptation
of the PID controller parameters is presented.

The proposed scheme is demonstrated using the PID
benchmark problem of Morilla (2011). Three simulations

are conducted. The first two simulations are the compar-
ative tests suggested by Morilla (2011). Additionally, we
propose a third simulation scenario to show the further
potential of our adaptive control approach. The simulation
results indicate considerable performance improvement in
comparison with the non-adaptive reference case in all
three scenarios.

The paper is organized as follows: First the proposed
implementation of the PID controller and the main ideas
of the adaptive Unfalsified Control framework with the ex-
tensions from Engell et al. (2007) are presented. In section
3, our proposed approach for inclusion of robustness in
the Unfalsified Control framework is described. Section 4
shows the application of the scheme to the PID benchmark
problem. The conclusions are drawn in section 5.

2. THE CONTROL SCHEME

2.1 Preliminaries

Let x := {x(1), x(2), ... ∈ R} denote discrete-time signals
(sequences). The l2-norm of a sequence x is defined as
‖x‖2 := (

∑∞
k=0 |x(k)|2)1/2 and the l∞-norm is defined as

‖x‖∞ := max0≤k≤∞ |x(k)|. Let G be a dynamic operator
which maps u to y, then y = G(u) is written as y = G · u
if G is linear. The induced 2-norm of a dynamic system
G is defined by ‖G‖i2 := supu�=0

‖y‖2
‖u‖2

. The signal-to-
peak norm of a transfer function T (s) is defined by
‖T (s)‖l := max0≤k≤∞ (w T (k)), where the row vector
T (k) is the step response of T (s) and w is a constant
vector w := [−1, 1]T . πk denotes the k step discrete time
truncation operator πk : {x(1), ...} → {x(1), ..., x(k)}. ⊗
denotes the convolution operator.

2.2 The controller structure and implementation

The transfer function of the PID controller is assumed to
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be

C(s) = kp

(
1 +

1
Tn s

+
TD s

N s + 1

)
.

The parameters of the PID are adapted online. To fa-
cilitate the adaptation of the controller parameters, the
PID controller is implemented in a specific setup. Fig. 1
presents the proposed implementation of PID controller.
The specific placement of the PID gains shown in Fig. 1
helps to reduce the rapid changes in the control output u
after switching the PID control parameters, see e.g Cheong
and Safonov (2008). Furthermore, as shown in Fig. 1 the
standard PID controller is complemented with an anti-
windup mechanism to avoid the controller saturation.

_
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kp
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N s+1

1
Ta
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Fig. 1. Implementation of the PID controller with an anti-
windup mechanism.

The parameters of the PID controller are adapted online
by switching between a set of candidate controllers defined
as C := {C1, C2, ..., Cn}. Each candidate controller Ci is a
set of PID controller parameters defined as

Ci := [kp,i, Tn,i, Td,i]T .

It is assumed that the time constant of the anti-windup
term Ta is Ta = Tn,i and the parameter N is fixed.

If switching of the PID controller parameters is not done
properly, undesired bumps will occur immediately after
the switching. A possible approach to avoid this problem
is to change the internal states of the controller at the time
of switching. The internal states of the PID controller can
be changed, if the PID is implemented in the state space
form as

ẋ1 =
kp

Tn
e, (1)

ẋ2 = − 1
N

x2 + e, (2)

u = x1 − kp Td

N2
x2 + (kp +

kp Td

N
) e, (3)

where x1 and x2 are the states of the integrator and
derivator of the PID controller respectively.

To achieve a bumpless transfer, the states x+
1 and x+

2
can be manipulated at the time of switching to the new
parameters (k+

p , T +
N , T +

d ) such that the control output
remains constant after the swithing

u+ = u. (4)
Here, we present an improved version of the approach in
Cheong and Safonov (2008) to manipulate the internal
states of the controller. This approach is based on the
slow fast decomposition method of Balas et al. (2005).
According to the slow-fast decomposition method, the PID
controller can be decomposed into a slow “integrator” part
and a fast “derivator” part.

Cheong and Safonov (2008) suggested to set the state of
the fast part to zero x+

2 = 0 and recalculate the state of the
slow part of the controller to achive u+ = u. An equation
for x+

1 is obtained from (3) and (4) as

x+
1 + (k+

p +
k+

p T +
d

N
) e = x1 − kp Td

N2
x2 + (kp +

kp Td

N
) e,

where x+
2 = 0 and solving for x+

1 results in

x+
1 =x1 + (kp − k+

p +
kpTd

N
− k+

p T +
d

N
)e − (

kpTd

N2
)x2. (5)

Based on several experiments, we noticed that a better
practice to achieve a bumpless transfer is to maintain
the state of the fast part of the controller x+

2 = x2 and
recalculate the state of the slow part in a different fashion
than suggested by Cheong and Safonov (2008). In our
proposed bumpless transition approach the new states of
the PID controller after the switching are calculated from

x+
1 =x1 + (kp − k+

p +
kpTd

N
− k+

p T +
d

N
)e

− (
kpTd

N2
− k+

p T +
d

N2
)x2, (6)

x+
2 =x2, (7)

Equation (6) is derived from (4) assuming that at the time
of switching x+

2 = x2. The equations (6) and (7) are dif-
ferent from those in Cheong and Safonov (2008) where the

term
k+

p T+
d

N2 in (6) is not considered and x+
2 is equal to zero.

2.3 The adaptive control scheme

Fig. 2 shows the setup of our adaptive control scheme.
This setup is a modification of the scheme in Wonghong
and Engell (2008). The unknown plant P is controlled
in a feedback loop. The online supervisor modifies the
parameters of the active controller Ĉ by selecting the best
candidate controller from the set of candidate controllers
C. If a suitable candidate controller is not available,
an online optimization is performed and new candidate
controllers are added to the set C.

Parameter Optimization

Switching
Mechanism

Cost
Calculation

Adaptive Control Algorithm

Set of finitely

Active Controller Unknown Plant

OutputReference

many controllers

Error
Scanning

Ĉ ∈ C

Cn ∈ C

P
r ye u

Fig. 2. The adaptive control scheme
The adaptation of the active controller is based on the ε-
hysteresis algorithm of Morse et al. (1992). This algorithm
is widely used in the Unfalsified Control framework, see
e.g. Wang et al. (2007). In ε-hysteresis algorithm, at each
time step k, the obtained measurements (r,u,y) are used
in a cost function J(Ci, k) to compute the cost of each
candidate controller. If a candidate controller Ci exists
that can perform better than the active controller Ĉ,

J(Ĉ, k) > min
Ci∈C

J (Ci, k) + ε, (8)
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then Ci is selected as the active controller and is
placed in the control loop in the next time step, Ĉ :=
arg minCi∈C J(Ci, k).

The threshold ε is used to ensure that the adaptation is
not performed continuously but only when necessary. By
selecting a proper threshold α and monitoring the candi-
date controllers at each time step, destabilizing candidate
controllers can be detected. Thus, if

J(Ci, k) > α, (9)
the candidate controller Ci is called falsified and removed
from the set of candidates, see Safonov and Tsao (1997).

Following the Unfalsified Control idea, the so-called ficti-
tious signals are used to evaluate a measure for the perfor-
mance of the candidate controllers. Fig. 3 shows the setup
to calculate the fictitious reference r̃i and the fictitious
error ẽi signals for each candidate controller Ci. Here C−1

i
denotes the inverse transfer function of the controller Ci.

_
r

r̃1

r̃2

Ĉ

C−1
1

C−1
2

P
e

ẽ1

ẽ2

y

y

u

. . .

Fig. 3. Generation of fictitious signals r̃i, ẽi.

Originally, the signals r̃i, ẽi were used directly in a cost
function to compute the cost values, see Safonov and
Tsao (1997), Wang et al. (2007). However, as indicated in
Dehghani et al. (2007), Engell et al. (2007) the originally
proposed cost function can not compute the cost of the
destabilizing controllers correctly unless the destabilizing
controller is placed in the control loop. Therefore, in
Engell et al. (2007) a new cost function that can be
used to evaluate the performance of both stabilizing and
destabilizing candidate controllers correctly was suggested.
This new cost function which is also used here is defined by

J(Ci, k) :=
‖πkei‖2

‖πkr‖2 + ρ
, (10)

where ei is the control error that would result if the
candidate controller Ci was in the loop instead of the active
controller Ĉ until time k.

For a linear system, the control error ei and reference
signal r are related by the sensitivity transfer function
Si := 1

1+P Ci
as Ei(z) := Si(z) R(z) or similarly as

Ẽi(z) := Si(z) R̃i(z). As the plant P is unknown, Si and
therefore the control error ei can not be computed directly.
To solve this issue, in Engell et al. (2007) it was suggested
to compute the impulse response of Si approximately by
deconvolution of the fictitious signals r̃i and ẽi, using
ei := s̃i ⊗ r and ẽi := s̃i ⊗ r̃i.

In Engell et al. (2007) and Wonghong and Engell (2008)
it was suggested to use the cost function (10) in an online
optimization to compute l2-optimal controllers. This idea
is followed here.

As shown in Fig. 2, two seperate online mechanisms can
trigger the optimization in our scheme. The cost mon-

itoring mechanism calculates the cost of all candidate
controllers. It triggers the optimization if all candidate
controllers are falsified. The error scanning mechanism
monitors the error e and rate of change of error to de-
termine whether the active controller (which is the best
available controller in the set) is performing satisfactorily
or not. If the active controller is not performing satisfac-
torily (e.g. in case of non-decreasing steady state error),
the error scanning mechanism triggers the optimization,
see Nabati and Engell (2010) for details.

3. INCLUSION OF ROBUSTNESS

If the unknown plant is nonlinear and/or time-varying,
the information gained from the signals (r,u,y) recorded
in the past at some operating point does not represent the
behavior of the plant fully and correctly. Thus there is a
mismatch between the plant dynamics that is extracted
from the recorded signals and the true plant dynamics.
Hence robustness against uncertainties must be included.

To include robustness against uncertainties into adaptive
control scheme, we propose to use a data-driven method
to derive bounds for the uncertainties. Based on the ob-
tained bounds, a sufficient condition for robust stability
is defined. This condition is used as a constraint in the
optimization to obtain optimal controllers which are ro-
bust for the observed plant-model mismatch and in the
controller falsification to avoid non-robust controllers from
being placed in the control loop, see Nabati and Engell
(2010), and Nabati and Engell (2011).

To describe the uncertainties, the model error modeling
concept of Ljung (1999) which is shown in Fig. 4 is
employed.

_

model error model

r
Ĉ

Wu Δc

G

Plant

e ysim yu

ũ
ū ȳ

Fig. 4. Output-multiplicative uncertainty description.

In this concept, a general nonlinear plant P is described
by a linear model G and a nonlinear model error model.
Since the plant P is unknown, the linear model G has to be
obtained form the recorded signals (r,u,y) using a closed-
loop identification technique. We propose that during each
call of the optimization algorithm a new linear model G
for the plant is identified.

The model error model part consists of an arbitrarily
selected linear filter Wu and the operator Δc which maps
ũ to ȳ. The signal ū = ysim is obtained by simulation as
ysim = G · u and similarly ũ = Wu.ū.

Based on the small gain theorem, the system shown
in Fig. 4 remains stable for all possible uncertainties
described by the output-multiplicative uncertainty setup,
if the condition

‖Tũȳ‖∞ · ‖Δc‖∞ < 1, (11)
holds. Where Tũȳ is the transfer function between ȳand ũ.
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To evaluate (11) it is necessary to select a filter Wu and
determine the gain of Δc. To select the filter Wu we follow
Hindi et al. (2002) and Völker and Engell (2005). Where
the idea is to use an optimization to compute Wu such that
a tight uncertainty model is obtained which is consistent
with the measurements. Afterwards, the gain of Δc is
obtained following Poolla et al. (1994).
Theorem 1. Poolla et al. (1994). Given input and output
sequences ũ, ȳ of length N , there exists a stable causal
dynamic system Δc with

‖Δc‖i2 ≤ γ, (12)
iff

‖πkȳ‖2 ≤ γ ‖πkũ‖2 , ∀k ∈ [1, N ]. (13)

Theorem 1 gives an upper bound γ, for the gain of the
operator Δc. The minimum value of γ clearly is

γmin = max
k=1..N

‖πkȳ‖2

‖πkũ‖2

. (14)

We propose that during each call of the optimization
algorithm, the approach of Völker and Engell (2005) is
employed and a new filter Wu that provides a tight
uncertainty bound in combination with the new linear
model G is obtained.

Using γmin, the obtained filter Wu is scaled in each time
step according to algorithm 1 such that ‖Δc‖∞ ≤ 1 holds.
Thus a sufficient condition for robust stability is obtained
as ∥∥∥∥−WuGCi

1 + GCi

∥∥∥∥
∞

< 1. (15)

This inequality has to be evaluated in the frequency
domain. It is used as a constraint in the optimization and
in the controller falsification.

3.1 Multi objective optimization

In order to obtain robust controllers, we propose a multi
objective optimization to replace the l2 based optimization
scheme of Engell et al. (2007). This multi objective opti-
mization is done online, when it is triggered as described
in section 2.3. When the optimization is activated, all
data collected from the measurements are divided into
two parts. From the first part, a nominal model of the
plant G is identified. The nominal model along with the
second part of the measurements are used to obtain the
linear filter Wu. The model G and the filter Wu are used
to solve the optimization problem, see Nabati and Engell
(2010) and Nabati and Engell (2011) for details. The new
optimization is formulated as

min
θ

∥∥∥∥ 1
1 + GCθ

∥∥∥∥
2

, (16)

s.t.

∥∥∥∥ Cθ

1 + GCθ

∥∥∥∥
l

< γl, (17)

s.t.

∥∥∥∥−WuGCθ

1 + GCθ

∥∥∥∥
∞

< γ∞, (18)

and θ ∈ P1 × P2 × ..., (19)
where θ represents the parameters of the controller C,
γl := [−umin, umax]T is the bound for the control output
and γ∞ ≤ 1 parametrizes the robustness constraint.

After each optimization, the resulting optimal controller
is set as the active controller and is added to the set of
candidate controllers.

Algorithm 1 Δc consistency test
1: initialize: Let k := k0 be the time when Alg. 1 is

called for the first time; let y := {y(0), · · · , y(k)},
u := {u(0), · · · , u(k)} be measurements

2: k := k + 1
3: ȳ := y − G · u
4: ũ := Wu · G · u
5: γ := max (‖πkȳ‖2/‖πkũ‖2, 1)
6: Wu := γ · Wu

7: goto 2

3.2 New conditions for controller falsification

In the original Unfalsified Control approach falsification
of the candidate controllers is only based on the condition
(9). Non-robust controllers are not prevented from being
placed in the control loop. To overcome this problem,
we proposed in Nabati and Engell (2010) to augment
the candidate controller falsification condition by an H∞
robustness criterion as

J(Ci, k) > α, (20)
or ∥∥∥∥−WuGCi

1 + GCi

∥∥∥∥
∞

> 1. (21)

Both conditions (20) and (21) are evaluated at each time
step for each Ci. If for a Ci, one of these conditions holds
that controller is falsified.

The cost function J(Ci, k) in condition (20) is evaluated
using an FIR model of S̃i which is computed at each
time step by deconvolution, see Engell et al. (2007). Thus
the computed cost value reflects the performance of the
candidate controller at the current operating conditions
accurately. Having an accurate cost value improves the
adaptation using the ε-hysteresis algorithm.

To reduce the computational effort, the condition (21) is
calculated using a fixed linear plant model G and a fixed
filter Wu which were obtained during the last call of the
optimization algorithm. G and Wu are updated again if
an optimization is activated. Thus, the only term in (21)
which is updated at each time step is the gain of the filter
Wu. It is updated according to algorithm 1.

4. APPLICATION TO A BENCHMARK PROBLEM

The benchmark problem of Morilla (2011) is presented
here as an example. In this benchmark problem, an in-
dustrial drum boiler is controlled with a PID controller.
The schematic of the drum boiler is shown in Fig. 5.

For a proper operation of the drum boiler, it is necessary
to control the fuel/air ratio, the level of water in the drum
and the steam pressure. According to Morilla (2011), the
fuel/air ratio is regulated by a air control subsystem and
the level of water in the drum is regulated by the feedwater
control subsystem. Thus, the drum boiler can be presented
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Boiling process with integrated
air and water control

Precision Graphics

Fig. 5. Schematic of a drum boiler (left) and the process
presentation as a SISO system (right).

as a SISO system shown in Fig. 5. In this SISO system,
the steam pressure y := Steam Pressure is controlled by
the fuel flow u := Fuel F low. The load level act as a
disturbance on the system.

A black box model of the boiler is provided by Morilla
(2011) as a Matlab R© Simulink file. We use a PID con-
troller with an anti windup mechanism shown in Fig. 1
to control the model of the boiler. The parameters of
the PID controller are adapted online via our adaptive
control scheme shown in Fig. 2 using the measured sig-
nals (r,u,y). The proposed bumpless transfer approach
is employed to achieve a smooth transition between the
controllers.

Three simulations are conducted. The first two simulations
are the comparative tests suggested by Morilla (2011). Ad-
ditionally, we propose a third simulation scenario to show
the further potential of our adaptive control approach.

The initial operating point of the boiler in all simulations is
given as: Fuel flow = 35.21%, Load level = 46.36%, Steam
pressure = 60%.

The control sampling period is 5 sec in all simulations. The
model is integrated continuously. A zero order hold is used
between the controller and the model. The control input
has to be in the range 0 % ≤ u ≤ 100 %. It is assumed
that the control parameters TD, N are TD = 0 and N =
0.01. The remaining control parameters θ := [kp, Tn]T are
adapted online using our adaptive control scheme. The
simulations are done on an IntelR©E2180 with 2GB RAM.

The candidate controllers set consists of four controllers
C :=

{
[2.5, 50]T , [2.5, 25]T , [5, 50]T , [5, 25]T

}
. (22)

The controllers in the set C are combinations of the
reference and the example PID controllers given in Morilla
(2011). In all simulations, initially the plant is under
operation with the reference controller [2.5, 50]T .

4.1 Comparative test 1

In this test, a time variable disturbance (load level) shown
in Fig. 8 acts on the system. This disturbance causes
the steam pressure to deviate from its setpoint at 60%
as shown in Fig. 6. This figure shows that the reference
controller does not perform well.

As shown in Fig. 7, after 410 sec our adaptive control
scheme detect that a candidate controller ([5, 25]T ) which
can perform better than the reference controller exists
and switches to it. Fig. 6 clearly shows the achieved
improvement of the controller performance after 410 sec.
It can be seen that transition between the two controllers
is bumpless. This simulation took 33 seconds.
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Fig. 6. Comparative test 1: System reference (top, dashed),
system output for the adaptive case (top, line), system output
for the reference case (top, dotted), the manipulated variable
(bottom).
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Fig. 7. Comparative test 1: Cost of the candidate controllers
(top), adaptation of the controller gain kp (bottom, dashed)
and time constant Tn (bottom, line).
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Fig. 8. Comparative test 1: Load level.

4.2 Comparative test 2

In this test, the load level is fixed at 46.36%. As shown in
Fig. 9, the set point of the steam pressure changes from
60% to 65%. This figure shows that the reference controller
does not perform well in this scenario too.

As shown in Fig. 10, after 120 sec our adaptive control
scheme switches to [5, 50]T and after 145 sec to [5, 25]T .
This adaptation improves the controller performance com-
paring to the reference case as shown in Fig. 9. This
simulation took 15 seconds.

4.3 Test 3

The goal of this simulation is to show that our adaptive
control scheme can tune the active controller even in the
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Fig. 9. Comparative test 2: System reference (top, dashed),
system output for the adaptive case (top, line), system output
for the reference case (top, dotted), the manipulated variable
(bottom).
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Fig. 10. Comparative test 2: Cost of the candidate controllers
(top), adaptation of the controller gain kp and time constant
Tn (bottom).

case that initially no good candidate controller is available.
Here, the initial candidate controllers set consists only of
the reference controller [2.5, 50]T . In this test, a time
variable set point trajectory for the steam pressure is
considered, see Fig. 11.

The error scanning mechanism activates the optimization
four times. The collected measurements are used in the
optimization to add new candidate controllers to the set.
The obtained optimal controllers are used to tune the
active controller parameters as shown in Fig. 11. This
figure shows that the system performance is improved by
adaptation of the PID parameters. This simulation took
1003 seconds in total. Each of four optimizations took
about 120 seconds.
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Fig. 11. Test 3: System reference (top, dashed), system output for
the adaptive case (top, line), system output for the reference
case (top, dotted), adaptation of the controller gain kp (bottom,
dashed) and time constant Tn (bottom, line).

5. CONCLUSION

In the presented work, an online adaptation scheme for
PID parameters is developed. An improved bumpless tran-
sition approach to facilitate the adaptation of the PID
controller parameters is presented. The proposed adap-
tive scheme is applied to a PID benchmark problem.
The results indicate considerable performance improve-
ment in comparison with non-adaptive reference case in
all three simulations. The achieved improvement was ob-
tained without making any assumption about the plant
nor conducting any identification tests prior to the simu-
lations. The computation times indicate that the presented
approach can be applied to the real process.
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