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Abstract: In the presence of frequent inlet flow upsets, tuning of averaging level controllers
is typically quite complicated since not only the size of the individual steps but also the time
in between the subsequent steps need to considered. One structured way to achieve optimal
filtering for such a case is to use Robust Model Predictive Control. The robust MPC controller
is, however, quite computationally demanding and not easy to implement. In this paper two
linear controllers, which mimic the behavior of the robust MPC, are proposed. Tuning guidelines
to avoid violation of the tank level constraints as well as to achieve optimal filtering are presented.
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1. INTRODUCTION

The objective of averaging level controllers is to keep
the outlet flow of the surge tank smooth by using the
tank capacity to average out the effect of inlet flow
upsets. Following an inlet flow upset, averaging is typically
obtained by initially allowing the tank level to deviate from
its nominal set-point while slowly adapting the outlet to
the new throughput and ultimately bringing back the tank
level to the set-point.

Early approaches to averaging control are the PL con-
troller in (Luyben and Buckley, 1977) and the nonlin-
ear approaches by Shunta and Fehervari (1976). The
(de-)tuning of PI controllers has been addressed in (Che-
ung and Luyben, 1979), (Kelly, 1998) and (Shin et al.,
2008) amongst others. A control structure permitting sep-
arate responses to set-point and load disturbances was
proposed by Wu et al. (2001). The optimal non-linear
continuous- and discrete-time controllers were derived in
(McDonald et al., 1986) and (Campo and Morari, 1989)
respectively.

We have an application in one of Perstorp’s factories
where the previously mentioned approaches struggle to
obtain satisfactory flow filtering. The reason for this is
that traditionally inlet flow upsets have been treated as
separate occurrences, but, as seen in Figure 1, this clearly
does not hold in this case. In (Rosander et al., 2011)
optimal filtering in the presence of frequent inlet flow
upsets was obtained using robust Model Predictive Control
(MPC). The manner in which the robust MPC controller
achieves flow filtering differs from previous approaches in
that it does not return the tank level to a fixed set-point
following an inlet flow step. Instead the steady state tank
level depends on the current inlet flow level. The effect
of this behavior was analyzed in (Rosander et al., 2012)
? This work was funded by the Swedish Foundation for Strategic
Research as part of Process Industry Center Linköping (PIC-LI).

where it was shown that the robust controller outperforms
the optimal level controller by (McDonald et al., 1986) for
frequent upsets while achieving comparable performance
even for infrequent upsets.

In this paper, two linear controllers that mimic the behav-
ior of the robust MPC controller are discussed. The first
one is a special version of the proportional controller while
the other one is a PI whose set-point is not fixed but given
as an affine map of the inlet flow.
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Fig. 1. Inlet flow data from Perstorp AB last week of March
2011.

2. SYSTEM DESCRIPTION

We consider a cylindrical buffer tank with level y and
liquid constant density inlet and outlet flows qin and
qout respectively. For the sake of notational brevity it is
assumed that the outlet flow can be directly manipulated,
u = qout. Using mass balance we obtain the continuous
time model

ẏ(t) = kv (qin(t)− u(t)) , (1)
where kv is inversely proportional to the cross-sectional
area. Furthermore we assume that all quantities are given
in percent and that the outlet and inlet flow have equal
range

ymin ≤ y ≤ ymax, (2a)
qmin ≤ qin, u ≤ qmax. (2b)
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Here qmin = ymin = 0% and qmax = ymax = 100%
if no extra safety limitations are put on the tank level.
The assumption (2b) guarantees that we do not risk
violating the tank level constraints due to lack of outlet
flow capacity. Consequently we could allow the outlet flow
to have greater range than the inlet flow, but for the
purpose of this paper that would mainly complicate the
notation. For the same reason we assume that the inlet flow
is directly measurable. In any case, the linear dynamics of
the system allow for a straightforward estimation of the
inlet flow using the Kalman filter as shown in (Khanbaghi
et al., 2001).

Good averaging level control is characterized by a smooth
outlet flow, i.e., that u̇ is “small”. Typically this is quanti-
fied by either the Euclidean norm

||u̇||22 =

∫ ∞
0

u̇(t)2 dt, (3)

or the maximum change of the outlet flow
||u̇||∞ = max

t
|u̇(t)|. (4)

Which criterion that best captures “good flow filtering” de-
pends of course on the nature of the downstream processes.
In this paper we will display both to give as complete a
picture as possible.

3. ROBUST AVERAGING LEVEL CONTROL

We will briefly describe the robust MPC approach to
averaging level control taken in (Rosander et al., 2011).

The key idea behind the controller is that we want a
controller that does not only focus on filtering the current
upset but also is prepared to handle future ones. This is
obtained by formulating the problem in the robust MPC
framework. By treating future inlet flows as bounded and
unknown, a controller that is robust towards future upsets
and achieves optimal filtering is obtained. Mathematically
this corresponds to, in every sample instant, solving the
optimization problem

min
u(0:N)

max
qin(1:N)

||u(k)− u(k − 1)||∞ (5a)

subject to
y(k + 1) = y(k) + Tskv (qin(k)− u(k)) (5b)
y(1 : N) ∈ [ymin, ymax] ∀qin(1 : N) ∈ [qmin, qmax] (5c)
qin(1 : N), u(1 : N) ∈ [qmin, qmax] (5d)
y(0), qin(0), u(−1) known (5e)

where y(0) and qin(0) are the current tank level and inlet
flow respectively and u(−1) is the actuated control signal
from the previous sampling instant. The discretized dy-
namics and system constraints are represented by (5b-5d).
Robustness towards future inlet flow upsets is obtained
by taking the worst case situation (maximizing over qin).
Note that the only requirement put on the tank level is
that it must stay within bounds (5c). The controller is
thus allowed to “decide” the optimal tank level.

The behavior of the robust MPC controller differs from
most previous approaches (apart from the P controller)
as it does not return the tank level to a fixed set-point,
but instead the steady state tank level depends on the
actual level of the inlet flow. This is illustrated in Figure 2
for a sample feed where both the robust MPC controller

as well as a standard PI controller is used to control the
tank. The nature of the mapping from inlet flow to steady
state tank level depends on the prediction horizon, but
for prediction horizons that capture the transient response
of the system, the mapping stays almost constant, see
Figure 3. In Figure 3 also the approximation, the affine
mapping, used in this paper is shown.
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Fig. 2. Simulation of closed loop robust MPC withN = 20,
shown in solid black. For comparison purposes a stan-
dard PI-controller withKc = −1.5 and TI = 10 h−1 is
also shown dashed.
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Fig. 3. The steady state tank level as a function of the
inlet flow for different prediction horizons and kv = 1

3 .
Shown is also the affine mapping that will be used in
this paper.

3.1 Robust Optimal Averaging Level Control

The robust MPC controller does not permit an analytical
analysis, and to still obtain an explicit estimate of its
performance we do the following. The filtering problem
is formulated as an optimal control problem for which
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robustness towards future inlet flow upsets is obtained by
letting the steady state tank level be given by the affine
map shown in Figure 3. A robustly optimal control law
can thus be obtained by solving the optimization problem

min ||u̇||∞ or ||u̇||22 (6a)
subject to
ẏ = kv(qin(t)− u(t)) (6b)

qin(t) =

{
q0, t < 0

q0 +A, t ≥ 0
(6c)

y(0) = KSP q0 + bSP (6d)
y(T ) = KSP (q0 +A) + bSP , T free (6e)

where A is the size of the inlet flow upset. The constraints
(6d) and (6e) ensure that the resulting controller will
position the tank level analogous to the robust MPC
controller. Using Figure 3 the parameters of this mapping
can be derived to be

KSP =
ymax − ymin
qmax − qmin

, (7a)

bSP =
qmaxymin − qminymax

qmax − qmin
. (7b)

In (6) it is assumed that the system is in steady state
(constraint (6d)) when the upset occurs but that can be
relaxed.

The solution of (6) results in a nonlinear feedback con-
troller, see (Rosander, 2011) and (Rosander et al., 2012),
that we will not concern ourselves with in this paper. It
does, however, provide a lower bound on the achievable
performance for any controller using the affine mapping
(7)

JOPT,2 =
4kvA

2

9KSP
, (8a)

JOPT,∞ =
kv|A|
2KSP

. (8b)

The performance attained by the linear controllers will be
compared to these values.

4. ROBUSTLY OPTIMAL P CONTROL

The obvious choice of a linear controller which gives a
steady state offset is the P controller

u(t) = KP (r − y(t)) + bP , (9)
where KP is the gain, r the set-point and bP a bias term.
The set-point is actually also a bias term which can be
seen accordingly

u(t) = KP (r − y(t)) + bP = −KP y(t) +KP r + bP︸ ︷︷ ︸
bias

.

To mimic the affine mapping in Figure 3, maximum tank
level, ymax, should be mapped to maximum outlet flow,
qmax, and vice verse for the minimum values. Solving that
system of equations yields the tuning

KP = − qmax − qmin
ymax − ymin

,

bias =
qminymax − qmaxymin

ymax − ymin
.

(10)

This P controller tuning is admittedly not new but is also
advocated by Taylor and la Grange (2002) among others.

That the tuning does result in robustly optimal filtering
has, however, not previously been presented.

The performance of the P controller, for an upset of size
A, can be calculated by first noting that it gives the outlet
flow

u(t) = A
(
1− eKP kvt

)
+ bias . (11)

Using this, straightforward, but tedious, calculations give
that the performance evaluates to

JP,2 = ||u̇||22 = −A
2kvKP

2
,

JP,∞ = ||u̇||∞ = −|A|kvKP ,
(12)

where the minus signs come from the fact that KP < 0
to obtain stability. From (10) and (7) it follows that
KSP = − 1

KP
and we can thus conclude that in terms of

the Euclidean norm the performance degrades by approx-
imately 12% while the infinity norm actually is twice as
bad.

Apart from bad flow smoothing in terms of the infinity
norm criterion there is also an issue with how the controller
is perceived by the operators. The term bP is typically not
available since it is used to handle bump less transfers
between operating modes. To then obtain the bias as
in (10) a rather unintuitive set-point must be used, and
furthermore one that is never attained by the controller.
The risk is that the controller is perceived by the operator
as not functioning correctly and hence disconnected.

A PI controller, put in cascade mode, whose set-point is
given by a calculation block resolves these two drawbacks
of the P controller. The operators can easily see what set-
point the system is trying to achieve and the set-point
is also obtained. The PI controller also achieves better
smoothing, especially in terms of the infinity norm.

5. PI WITH VARIABLE SET-POINT

One easy way to mimic the robust MPC with a PI
controller is to let its set-point be given by the affine
mapping

r(t) = KSP qin(t) + bSP , (13)
where KSP and bSP are given by (7a) and (7b) respec-
tively. A block diagram of the proposed control structure
is shown in Figure 4 where the block MAP is the affine

Controller

MAP

kv
s

r

qin

+u − y

Fig. 4. Block diagram of the proposed PI controller.

map (13). In the subsequent analysis we assume that the
effect bSP has on u and y has reached its steady state value
and therefore only focus on qin.

5.1 Transfer functions

In addition to changing the set-point according to (13) a
β-factor in the controller will be used

U(s) = Kc

(
βR(s)− Y (s) +

1

TIs
(R(s)− Y (s))

)
. (14)

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WePS.5



The resulting closed loop dynamics from Qin can be
derived to be

Y (s) =kv(TIs−KcβKSPTIs−KcKSP )
TIs2−kvKcTIs−kvKc

Qin(s), (15a)

U(s) =
Kc(βKSPTIs

2+(KSP−kvTI)s+1)
TIs2−kvKcTIs−kvKc

Qin(s). (15b)

6. TUNING OF PI

When adapting the level, additional requirements (apart
from closed loop stability) have to be put on the controller:
an inlet flow step response cannot yield an under or
overshoot. Why this is the case can be understood by
viewing an example: Assume that the system is in steady
state at t = t′. Then qin performs a step from qmin to
qmax and eventually let us say at t = t′′ the system will
again be in steady state. We then have that u(t′) = qmin,
y(t′) = ymin, u(t′′) = qmax and y(t′′) = ymax. An
overshoot in either y(t) or u(t) 1 would then lead to tank
overflow while an undershoot would give an empty tank.

Before turning to investigate the under and overshoot of
the system we note that the controller has a direct term
from the inlet to the outlet flow

βKcKSP . (16)
A step in the inlet flow will thus give a discontinuous
outlet flow which obviously contradicts the main idea of
using surge tanks. The obvious choice is thus β = 0 to
decouple the outlet from the inlet flow. This yields the
transfer functions

Y (s) =
kv (KSPTIs−KcKSP )

TIs2 − kvKcTIs− kvKc
Qin(s), (17a)

U(s) =
Kc ((KSP − kvTI)s+ kv))

TIs2 − kvKcTIs− kvKc
Qin(s). (17b)

Both systems are thus of the form K s+z
(s+p1)(s+p2)

for which
there exist necessary and sufficient conditions to give a non
under or overshooting step response. The requirements,
as derived in (Kwon et al., 2002), are real stable poles
and that the zero is farther away from the origin than the
rightmost pole
−<{p1, p2} < 0, ={p1, p2} = 0, z ≥ max<{p1, p2}.

(18)
The resulting step response will actually be monotone and
henceforth we will refer to monotonicity as the sought after
behavior.

As derived in Appendix A the system given by (17a) and
(17b) has a monotone step response if and only if

TI >
KSP

kv
, (19a)

Kc ≤ −
4

kvTI
, TI ∈

(
KSP

kv
,
2KSP

kv

]
, (19b)

Kc ≤
kvTI

KSP (KSP − kvTI)
, TI >

2KSP

kv
. (19c)

The permitted area, defined by (19), is shown in Figure 5
for some numerical values of kv and KSP . In general
kv is, of course, not known exactly but replacing it by
1 Strictly speaking this is only required close to the boundary and
might thus be obtained for a non-linear gain. Relaxing (2b) would
also permit over or undershoot in u(t) even in the linear case.
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Fig. 5. Shaded area is the permitted region for
kv =

1
10 , KSP = 1 and bSP = 0. The optimal tuning

for these system parameters is also shown as a cross.

appropriate estimates (for example a lower bound in (19a)
and an upper one in (19b)) it is still possible to ensure a
monotone step response in y and u.

6.1 Optimal performance for a step disturbance

A tuning fulfilling (19) guarantees that the system will
stay within its bounds. The question then arises how to
select Kc and TI to achieve optimal filtering? We derive
the optimal parameters for the Euclidean norm since it
yields an analytical expression. For a flow upset of size A
this corresponds to solving

min
Kc, TI

JPI,2 = min
Kc, TI

||u̇||22
subject to
(17b), (19)

(20)

The calculation of JPI,2 has to be split into three parts
depending on the pole-zero configuration of the system.
For Kc = − 4

kvTI
the system has a double pole and obtains

JdoublePI,2 =
5k2vT

2
I + 4K2

SP − 8kvTIKSP

2k2vT
3
I

, (21)

where the superscript double is used to denote a double
pole. For Kc = kvTI

KSP (KSP−kvTI)
pole zero cancellation

occurs (regardless of TI value) and the PI controller
essentially 2 becomes a P controller and consequently the
criterion evaluates to

JsinglePI,2 = JP,2 =
kv

2KSP
. (22)

For Kc not on the boundary we have an over damped
second order system with performance criterion

J2
PI,2 =

(2kvTIKSP −K2
SP − k2vT 2

I )Kc + kvTI
2kvT 2

I

. (23)

Investigating J2
PI,2 closer we note that

∂J2
PI,2

∂Kc
=2kvTIKSP −K2

SP − k2vT 2
I =

− (kvTI −KSP )
2
< 0

(24)

which means that the objective function decreases with
increasing Kc. It is thus optimal to choose Kc on the
2 The integrating part of the controller is of course still present.
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boundary. Consequently either JdoublePI,2 or JsinglePI,2 is op-
timal. The optimal TI -value for JdoublePI,2 is either on the
boundary (19a) or the solution of

d JdoublePI,2

dTI
= 0

d2 JdoublePI,2

dT 2
I

> 0. (25)

Carrying out the calculations, we obtain the optimal value

TI =
6KSP

5kv
. (26)

Inserting this into (21) the objective evaluates to

JdoublePI,2 =
25kv

54KSP
, (27)

which clearly is smaller than JsinglePI,2 . Concluding, the
optimal tuning is

Kc = −
4

kvTI
,

TI =
6KSP

5kv
.

(28)

Turning to the maximum criterion we obtain that with the
proposed tuning it evaluates to

JPI,∞ =
10|A|kve−

1
2

9KSP
. (29)

Comparing the performance values obtained for the pro-
posed PI controller with that of the robustly optimal
controllers we see that it is 4% and 35% 3 worse in terms
of Euclidean and infinity norm respectively. Furthermore,
the PI is approximately 7% and 33% better than the P
controller in terms of the two and infinity norm criterion
respectively.

7. SIMULATION RESULTS

To illustrate the benefits with the proposed controllers
they are compared with a standard PI with a fixed set-
point (hereafter denoted Fix-PI) on data for the first 21
weeks (5 months) of 2011. The system is assumed to have
kv =

1
3 and

qmin = ymin = 0,

qmax = ymax = 100.

The Fix-PI is augmented with the tracking anti-windup
(tracking gain 1

Ta
= 1

TI
) in (Tharayil and Alleyne, 2002).

Furthermore the minimum and maximum outlet flows
are perturbed an additional 5% to improve the Fix-PI’s
handling of flows on or close to the boundary, hence
an outlet flow of −5% and 105% is permitted for the
Fix-PI controller. The tuning of the Fix-PI is a delicate
business as a too detuned controller will violate the level
constraints and too tight tuning will give bad disturbance
attenuation. We will do what is typically done in industry:
use historical data to find parameters that are optimal
for that data and somewhat robust towards the uncertain
future. We use four months of data from 2010 and find a
tuning which is optimal for that data. Robustness towards
future uncertainty is obtained by requiring that the control

3 This could have been decreased even further by instead minimizing
||u̇||∞.

parameters must keep the tank level within 10% and 90%
for the 2010 data. This yields the parameters

K2010
c = −1.1,

T 2010
I = 3.5.

(30)

To obtain a lower bound for what is possible to achieve
with a Fix-PI we use the actual data from 2011 and by
an extensive search the optimal Kc and TI values are
found. The parameters which obtained the least average
Euclidean norm value were

Koracle
c = −1.3,

T oracleI = 9.5.
(31)

The two tunings of Fix-PI as well as the proposed P and
PI controllers were simulated for the 2011 data and their
normalized weekly performance is showed in Figure 6. The
P controller performs, as expected, almost as well as the
variable set-point PI controller in terms of the Euclidean
norm, but much worse in terms of the infinity norm.
Furthermore we see that the performance of the oracle
tuning of the Fix-PI (which is a lower bound for what a PI
can achieve) is still ≈ 50% worse than the performance of
the variable set-point PI controller. The tuning using data
from 2010 performs almost as well as the oracle solution.
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Fig. 6. Normalized Euclidean and infinity norm for the
controllers: Fix-PI controller with the tuning using
data from 2010 (+), the Fix-PI controller with the
oracle tuning using the actual data from 2011 (∗), the
optimal filtering P controller (2) and the variable set-
point PI controller (◦).
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8. CONCLUSIONS

Two linear controllers that mimic the behavior of the
robust MPC have been presented. Tuning guidelines to
guarantee that the level does not violate any constraints
were derived. The PI with a variable set-point was shown
to perform considerable better than the P controller in
terms of worst case performance.

Future work includes investigating if the inlet flow char-
acteristics can be used to design alternatives to the affine
mapping and if gain-scheduling can be used to just enforce
monotonic step responses close to the boundary. A low
pass filter to the mapping should probably also be added
to improve the controller’s noise sensitivity.

Another extension is to apply the PI controller to a cascade
of surge tanks. The inlet flow to the second tank is then not
well described as a step as it is the outlet from the first
tank. The optimal control parameters might then differ
and whether the tuning can be done sequentially or not
needs to be investigated.
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Appendix A. MONOTONE STEP RESPONSE

With β = 0 the system has poles

{−p1,−p2} =
kvKcTI ±

√
k2vK

2
cT

2
I + 4kvKcTI

2TI
, (A.1)

where −p1 is the rightmost one. The zeros are placed in

−zqin,y =
KcKSP

TI
, −zqin,u =

kv
KSP − kvTI

. (A.2)

Stable poles are obtained if Kc < 0 and real poles iff

k2vK
2
cT

2
I + 4kvKcTI ≥ 0⇔Kc ≤ −

4

kvTI
. (A.3)

Straightforward calculations gives that −zqin,y ≤ −p1 is
fulfilled iff

Kc ≤
kvTI

KSP (KSP − kvTI)
, TI >

2KSP

kv

Kc ≤ −
4

kvTI
, TI ≤

2KSP

kv
.

(A.4)

The condition −zqin,u ≤ −p1 requires more attention. A
necessary condition is that the zero lies in the left half
plane

−zqin,u < 0⇔TI >
KSP

kv
. (A.5)

That fulfilled it follows that
kv

KSP − kvTI
≤ kvKcTI+

√
k2vT

2
I
K2

c+4kvTIKc

2TI
⇔

2kvTI − α(kvKcTI +
√
k2vT

2
IK

2
c + 4kvTIKc)

2αTI
≤ 0,

(A.6)

where α , KSP − kvTI . Since α < 0 it follows that

−α
√
k2vT

2
IK

2
c + 4kvTIKc︸ ︷︷ ︸
≥0

≥ kvTI(αKc − 2). (A.7)

We note that for a negative right-hand side

Kc ≥
2

KSP − kvTI
(A.8)

the inequality is trivially fulfilled and if not we can square
both to obtain the requirement

Kc ≤
kvTI

KSP (KSP − kvTI)
. (A.9)

It turns out that (A.8) and (A.9) do not impose any
additional restrictions on Kc since
−4
kvTI

≤ kvTI
KSP (KSP − kvTI)

⇔(kvTI − 2KSP )
2 ≥ 0.

(A.10)

Combining (A.4) and (A.5) concludes the derivation.
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