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Abstract:

There exists a large number of PID tuning rules for LTT systems. However, these rules often use
time delay approximations and ignore parameter uncertainties. This work updates the classical
parameter space approach to an one step PID tuning approach to guarantee robust stability for
LTT time delay systems with explicit consideration of uncertainties in the plant parameters and
the time delay. The basic idea is to calculate how the root boundaries changes due variation of
system parameters. Bands of root boundaries are determined by this analysis. The challenging
task of robust stability of time delay systems is converted to an easier minimum/maximum
search to estimate the borders of the root boundary bands. The presented method satisfies

robust stability with only small conservatism.
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1. INTRODUCTION

The stability analysis of time delay systems, especially
with uncertain and immeasurable time delay is a very
difficult task. A wide range of approaches exists to estimate
the stability of LTI time delay systems. They are based
on e.g. Lyapunov-Krasovskii (Gu and Niculescu (2003)),
Lyapunov-Razumikhin (Gu and Niculescu (2003)), the
direct method (Walton and Marshall (1987)) and the
Rekasius method (Ebenbauer and Allgéwer (2006)). These
approaches are often very challenging, conservative and do
not, support parameter uncertainties directly.

The goal of the presented approach is to calculate the
whole space of stabilizing PID parameters based on the
system parameters and their corresponding range of un-
certainty. The presented approach to guarantee robust
stability is based on the classical parameter space approach
by Ackermann (2002). Hohenbichler and Abel (2009) ex-
tends this approach to deal in the synthesis step with time
delay systems. But the application to robust stability and
the performance conditions were not addressed. Also, the
analysis step was not developed.

These outstanding analyses should be rescheduled in the
present paper. The following method updates the classical
parameter space approach to a one step approach to
guarantee robust stability. To realize this, it is studied how
the root boundaries shift when the plant parameters vary
with respect to the uncertainties. Based on this, a worst
case estimation is developed and bands of root boundaries
result. As will be shown in the following, the highly
challenging problem to guarantee robust stability can be
converted to a simple minimum/maximum estimation to
calculate the borders of the of root boundary bands. With

this approach, the second step of the classical parameter
space approach is automatically verified. Consequently, in
only one step a necessary and for a wide class of systems
sufficient (with only small conservatism) region of robust
stability for the PID parameters can be derived.

The structure of this paper is as follows. In the second
section, the basics of the classical two step parameter space
approach are repeated and the following used method
is sketched to modify this classical approach to a one
step approach for guaranteed robust stability. In the next
section, the CRB calculation for the delay-free case is
presented. Following this, an extension of this approach
(for the delay case) is demonstrated. In the fifth section,
the resulting stable PID space is discussed to illustrates
the results of the presented approach. The sixth section
deals with a short overview of the planned and partially
implemented methods to realize performance requirements
with respect to the previously calculated PID space. The
paper ends up with a conclusion.

2. MAIN IDEA OF THE ROBUST APPROACH

The classical parameter space approach consists of two
steps. In the first step (synthesis), the stable 3D region in
the PID controller parameter space (k) is calculated for
one fixed system parameter combination (A(s), R(s), L).
Based on this, in the second step (analysis), it is verified
that (with respect to the system parameter uncertainty
(q)) every parameter combination of the previously calcu-
lated PID space leads to a stable closed loop system.

To calculate the PID parameter space, the following
nomenclature is used. The PID controller has the form
Kr+ K Kps?
PID(s, k) = LT 2Aps T Aps (1)
S
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and the LTI time delay systems has the transfer function

G(s) = %e":s. For the following stability analysis, the
location of the eigenvalues are calculated based on the
characteristic equation of G(S). This leads to the quasi

polynomial
P(S, k7 L7 q) - (KI + KPS + KD82) A(S,q)
+ sR(s, q) e*F (2)
——

B(s,q)
with the polynomials

A(s,q) = aolq) + ... + am(q)s™,
and

B(s,q) =bo(q) + ...+ bn(q)s", bo(q) #0.  (4)
The parameter uncertainty can be graphically represented
by the @Q-box. Fig. 1 illustrates the Q-box of a system
with two parameters with two independent lower (g; )
and upper (q;" ) bounds respectively. The dimension of
the @Q-box corresponds to the number of uncertain system
parameters. The goal of the parameter space approach is
to find all PID parameters which guarantee for the whole
system parameter family (described by the Q-box) a stable
closed loop behavior.

am(q) #0  (3)

4 4
q;

Fig. 1. Parameter uncertainty area

The starting point of the classical synthesis step is the Hur-
witz stability. The borders which limit the PID parameter
space (root boundaries) can be calculated with respect
to the border crossing rate. The root boundaries can be
interpreted as equations to calculate those PID parameter
combinations that lead to leave the stable left-half s-plane.
The present approach starts like the classical parameter
space approach with the calculation of the borders of the
PID parameter space based on Hohenbichler and Abel
(2009). In addition, it is studied how the root boundaries
shift when the plant parameters vary. This leads to the
following worst case analysis of all three types of root
boundaries.

2.1 Real root boundary (RRB)

The RRB is the root boundary for the case when the roots
of the system leave the left-half s-plane by crossing the
imaginary axis along the real axis. To calculate the RRB,
s = 0 must be inserted into the quasi polynomial equation
(2). This follows P(s = 0,k) = K;A(0) + B(0) = 0 and
leads to .

0

K; = (5)
ao

In case of a PID controller, it holds that by = 0, because of
the integral part of the controller in equation (2). Thereby,
the RRB is simplified to K; = 0, independent of the
plant parameters. Hence, this border lies for any system
parameter combination at the same value, K; = 0.
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2.2 Imaginary root boundaries (IRB)

The second type of root boundaries are the IRBs. Here, the
system poles leave the left-half s-plane when the absolute
value of s goes to infinity. After inserting |s| — oo into
equation (2), it holds

Kp=+in. (6)
Am

Tt is easy to see that equation (6) applies only for systems
with the order n = 2+m. The following study is restricted
to this class of systems. The two IRB boundaries are
directly dependent on the plant parameters. The highest
value of Kp from equation (6) results when the highest
value of b,, and the smallest of a,,, are used. The estimation
of the smallest value of K is the inverse case. Hence, it
is easy to estimate the two worst case IRB bands with
consideration of the uncertain system parameters.

2.8 Complex root boundaries (CRB)

The third type of root boundaries are the CRBs. In this
case, the system poles cross the imaginary axis with a
complex conjugate pole pair. The derivation of the CRB
equations is described in detail in Ackermann (2002).
Based on this, the ¢ linear (with respect to Kp) CRBs
K, i=1,...,c can be calculated as

K= w;iKD + K?,z‘(wg,i) (7)
with

K?,i(“’gyi) =

—Rp cos(wg,i L) + Ipsin(wg; L) + wy i Kpla (8)
Ra
Rx represents the real part and Ix the imaginary part
of the polynomial X. Keep in mind that Rx and [x are
functions of wy ;, (see equation (3) and (4)). The singular
frequencies wg = [wy.1,...wy.n]? are the zeros of
IsRpcos(wL) — I4Ipsin(wL)
R+ 15) .
RaRpsin(wL) + Ralp cos(wl) ® 9)
w(RE +13) "
In the case of parameter uncertainties, the zeros wg of
equation (9) are shifted (see section 4). Hence, intervals
of each zero wy ; results. Whereby a CRB band results for
each zero wq interval. A worst case estimation to calculate
the bounds of the CRB bands is not as easy as in the
case of IRBs. Section 3 and 4 presents some approaches to
calculate a worst case estimation of the CRBs boundaries.
In the present section, only the basic principle behind
the following worst case analysis of the CRBs should
be described. The overall idea of the CRB worst case
estimation is to find the borders of the CRB bands
with respect to the parameter uncertainty. To reduce
the computational effort and to simplify the geometric
shape of the resulting CRB bands (see Fig. 2) for the
subsequent analysis, these optimization task is divided into
two sequentially solved problems. Firstly an estimate of
the min/max slope (ny,i) of each CRB band (for every
zero wg interval) with respect to the uncertainty is done.
Based on the min/max wy; of each zero wy interval and
the parameter uncertainty, an estimate of the min/max
corresponding intersection point (K ?Z) of each CRB band

is performed. The optimization strategies for wg and K ?
are described in detail in section 3 and 4.

0:
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In the present approach it is assumed that the bounds
(min/max w, ;) of each zero wgy interval generate the
min/max K ?,i. But this is not generally fulfilled and gen-
erates an overestimation of the CRB bands. Fortunately,
the overestimation produces mostly only a small error. The
maximum occurring error (shift of the CRB) corresponds
to the maximum amount of K?,i. The amount of K?i
is proportional to the amount of wg;. In the delay-free
case, this amount is very small (see section 3). In the time
delay case, the amount of wy ; is growing directly with the
amount of uncertainty in the time delay L. Therefore it is
very easy to quantify and evaluate the conservatism. But
above all it should be noted that due to the overestimation,
only the areas of the 3D PID space which are located very
close to the instability boundaries are lost. An example
of the resulting overestimation can be seen in Fig. 2. To
create this plot, the example system G1(s) = %
with an +10 % uncertainty in all system parameters and in
the time delay is used. Fig. 2 illustrates the CRB band (for
the first zero wy range) with consideration of parameter
uncertainties. For the illustration of the correct solution
10 example CRBs (with different system parameters with
respect to the uncertainty bound) were given.

4
2
M0
-2 I overestimation
B samples
4 L n n n
-4 -3 -2 -1 0 1 2 3 4

Fig. 2. Overestimation of the CRB bands

3. CRB FOR UNCERTAIN DELAY-FREE SYSTEMS

The following sections demonstrates how a worst case
estimate for the CRBs can be exactly realized. At first, the
delay-free case is discussed. For this worst case estimate,
the borders of the CRBs must be calculated. In order to do
so, equations (8) and (9) must be analyzed. Both equations
are simplified in the delay-free case (L = 0)

wy i Kply — Rp

K?,z‘(wg,i) = R

(10)

and
_ IARp — Ralp

=———— " —Kp. 11
W+ 1) T "
—_———
g(w)
The first step is to estimate the borders of each zero wy
interval and so for each CRB band. Hence, the min/max
zero wy; of each interval of equation (11) must be calcu-
lated. The optimization task is formulated in the form
min / max
qeQ’ qeQ
s.t. 0=g(w,q)— Kp.
It can be seen that this problem is not convex. There exist
some very powerful numeric tools to find the min/max
of high dimensional non convex functions (e.g. MATLAB

Wy, i

(12)
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Global Optimization Toolbox). But this numeric tools can-
not guarantee to find the global optimum, and hence the
correct borders in the parameter space. So, an approach
to guarantee the convergence to the global optimum must
be developed. The starting point of this approach is to
convert the zero search of equation (11) to a min/max
search of g(w). In Fig. 3 can be seen that the min/max of
g(w) corresponds to the min/max of wy ;. To create this
plot, the high order nonminimum phase example system
from the parameter space section of Ackermann (2002) is

4 3
_ —s " —7s"—2s+1 :
used, Ga(s) = Ts6 T 115574657 19555+ 100527745 722+ 10 Fig. 3

the value of the function g(w) was increased and decreased
by 50 percent to illustrate the effect on the zeros w.

10
—g(®.aq) 15
5 b

= —g(w,q)
= 0
% — g(w,q) - 0,5

-5 —

KP
0 1 2 3 4 5

Fig. 3. Relation of the amplitude and the zeros of g(w)

To find the min/max of g(w), the min/max denominator
and numerator of g(w) must be found. This optimization
problem is also non convex. One way to guarantee the
convergence is an overestimation. That is demonstrated
by the min/max denominator search in the following. To
find the maximal denominator, the absolute value of R4
and T4 must be maximal. Based on equation (3) R4 and
I 4 can be written as a function of w

Ra(jw)=ag —aw? +aqw? —agw® +... 13
I4(jw) =a1jw — azjw® + asjw’® — arjw’ +. ... (13)
If all coefficients of the A(s) polynomial are posi-
tive, R4 becomes maximum for the maximal values of
[ap, a4, as, ...] and the minimal values of [a2, ag, @10, .- ..
When a coefficient of A(s) is negative, the opposite bound
must be chosen for this coefficient. The only restriction
is that A(s) must be an interval polynomial whose coef-
ficients do not change their sign with respect to the un-
certainty bounds. The I4 optimization is analogous to the
R 4 case. The optimization of the individual real and imag-
inary parts, coupled with the appropriate case distinctions
must be applied analogously for the numerator. Hence, the
variables in equation (11) are analyzed independently and
the resulting optimization problem is easy to solve. The
described analyses can also be performed automatically.
To do so, all real and imaginary parts are regarded as
independent variables that are optimized one by one.

The optimization of equation (10) can be performed simi-
larly. Hence, it is easy to estimate the min/max K?’i with
the previously calculated min/max wg; of each zero wgq
interval. From equation (10) and (13) it can be seen that
the min/max K?,i lie in the corners of the @-box. For
the case of two parameters this result complies with the
Kharitonov polynomial theorem. This theorem states that
a polynomial of the form p(s) = ag + a1 + ... + a,s"
with uncertain parameters a, < a, < af foru=20,...,r
is stable if and only if the following four polynomials are
stable (by Kharitonov (1978))
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pi(s) =ag +ays+afs®+ads®ta;st ...
p2(s) :ag'+a'1~'s+a2_52+a§53+a1's4+...
p3(s) = ag' + zzl_s+a2_s2 +a§'53 +a2‘s4 + ...
pa(s) = ag +a1~'s+a3'32+ags3+als4+...
In the case of two uncertain parameters, the corners of
the @-box (Fig. 1) must be stable. So it can be deduced
that an easy way to solve the robust stability problem in
the delay-free case (without the conservative optimization)
is to plot the PID space of each corner of the Q-box. The
intersecting area of the resulting four 3D areas is the stable
PID-parameter area for the whole parameter set.

(14)

But the Kharitonov polynomial theorem is only wvalid
for interval polynomials. For a polynomial of the form
p(s) = ap(q) +ai(q)s+...+a.(q)s" with the uncertainly
g=1|q---q :q; <qu<q} foru=0,...,r the edge
theorem must be used (see Fu et al. (1989a) and Fu et al.
(1989b)). One approach to transfer this problem in the
previously described form is to neglect the g dependency.
This transfer (calculation of the limits of each coefficient)
is possible without any further effort, but it makes the
solution very conservative because of the inherent loss of
information. If this problem should be solved with the
intersecting area plot approach, the PID space of each
parameter combination of the edge of the -box must be
plotted. With respect to feasibility, this is not applicable
because the resulting test set is infinite. In such a case
alternative stability analysis methods demonstrated in Fu
et al. (1989a) can be applied (even for time delay systems).

4. CRB FOR UNCERTAIN TIME DELAY SYSTEMS

For better understanding, important results are demon-
strated by the example system G3(s) = Ga(s)e™ "7 with
a £10 % uncertainty in all system parameters and in the
time delay. During the following calculation a constant
Kp = 11is used. Generally it can be found out, if a system
has a time delay, a finite test set (like the Kharitonov
polynomials) to use the intersection area approach cannot
be found. The reason is the pole movement of such a
system. The poles do not move linearly in the s-plane
under variation of the time delay L. This phenomena can
also be studied in equation (8). This equation shows that
the extreme values of K}{l are not correlated with the
min/max value of the time delay L (vertices of the Q-
box), because of the trigometric functions. Hence, in this
case it is not sufficient to test only the vertices of the Q-
box, which would lead to a finite test set.

Therefore the worst case estimation must be done by using
the previously presented optimization method. Like in the
delay-free case, this problem is divided into two separate
tasks. At first, the min/max w, ; for each zero wy interval
is found. In the second step, the min/max KIO,Z- with
the previously calculated min/max wg, is found. Using
addition theorems, equation (8) and (9) can be modified
to a more convenient form

VR% + I} R
K?,i(wgﬂ) =sgn(Ip) % sin | wg,; L + arctan ([—I:)
——— ———
" ,j (15)
" wy,iKpla
Ra
————

~
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and
[ Ry +13 f2
0 =sgn(/] B 1B __qin | wlL + arctan (—) —K 16
en(/s) o (B + 12) i p (16
N——————
5 €
h(w)

with

f1=Ialp + RaRB
fo=Ralp — IaRB.

(7)

A way to guarantee stability of the resulting PID space
(without convergence problems) is an overestimation of
equation (16). The idea is to analyze all terms (L, €
and 0) in equation (16) separately, like in section 3. The
time delay L has the strongest influence on wg because
the main cause of the frequency change is based on the
time delay variation AL (see equation (16) and Fig. 4).
But fortunately, the value of the time delay to mini-
mize/maximize h(w) is known exactly. Lyin/Lmax corre-
sponds to hmin(wg)/hmax(wy) and leads so to the min/max
wg,i- Hence, it can be assumed that uncertainty in the
time delay does not produce conservatism. The term e
changes the frequency of h(wy) in equation (16). It is
easy to see that ¢ becomes maximal when f; is minimal
and fo maximal. An increase in § causes an growth of
the amplitude of h(wy) in equation (16) and the zeros wy
are shifted outwards. The largest amplitude results in the
largest absolute value of R4 and I as well as the smallest
possible absolute value of R4 and I4. Hence, every real
and imaginary part in equation (16) and (17) must be opti-
mized separately, like in section 3. So, the smallest/largest
zero of equation (16) can easily be calculated, because now
all variables are interpreted independently. The decoupled
analyses leads to a neglecting of the coupled dependency of
the real and imaginary parts. Hence, the solution becomes
a little conservative. The conservatism grows with the
value of the uncertainties in A and B polynomial.

To get a feeling of the magnitude by the overestimation,
the influence of the parameter uncertainties of system
G3(s) to the zeros of the function h(w) is shown in
Fig. 4. In this figure, the reference plot h,.f(w) illustrates
the course of h(w) without parameter uncertainties. The
plot Amin(w)/hmax(w) illustrates the h(w) function which
leads to the smallest/greatest possible zeros by appro-
priate choice of the system parameters from their range
of uncertainty. The amplitude offset (caused by AA and
AB) seems very large, but with considering that the Kp
values can no be bigger/smaller than hp,;, (Hohenbichler
(2008)), the effect of this overestimation to the zeros of
h(w) is comparatively low. The effect of the frequency
change created by the other system parameter (AA and
AB - bounded by the arctan) is also relatively small.
However, such generalizations are difficult because the
resulting effect on the overestimation has a strongly depen-
dency on the polynomials of the system transfer function.
Fortunately, the conservatism is not critical because the
undetected stable PID parameters are very close to the
stability border and can easily lead to an instability.

One method to reduce the conservatism without losing
the guarantee of robust stability of the whole resulting
PID area is to use a numerical calculation of the rightmost
eigenvalue of the system (e.g. using the DDB-BIFTOOL
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Fig. 4. Effect of the parameter uncertainties to h(w, ¢;)

from Engelborghs et al. (2007)) in every corner of the
previously calculated PID space. The PID space is limited
by the root boundaries, where the closed system eigenvalue
is zero (see section 2). Hence, the corners of the PID space
can be adapted until the right most eigenvalue in each
corner is equal to zero. The adaption can be realized as
demonstrated by Michiels et al. (2002).

If a global optimization strategy is used, the starting values
can be calculated iteratively. For a small Kp (Kp — 0),
equation (16) becomes very convenient. In this case, Kp
and § are going to zero. In the next step, the zeros of
the sinus term must be found (lim,,_osin(n) = 0). Hence,
it only must be calculated when € is equal to w, ;L. The
parameter set from which the optimized boundaries of wy ;
are derived can be used iterative as starting point for the
optimization of the next higher value of Kp.

When the min/max wy; of each zero wq interval is cal-
culated, the corresponding min/max K? , must be found.
This can be done easily because L and € only affect the
frequency of the sinus term (see equation (15)). Hence,
in the first step the amplitude o and the linear term -y is
minimized /maximized like in section 3. In the second step,
L and e which min/max the individual K ?,i are found using
a simple parameter variations. Thereafter the resulting
CRB bands mapped in the PID space, Fig. 5.

5. STABLE AREAS

The next task of the approach is to test which side of
the root boundaries leads to a stable polygon. To realize
this, in principle one PID parameter combination of each
resulting 2D polygon (see e.g. the nine polygons in Fig. 5)
can be taken to test the closed loop system stability (like in
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Engelborghs et al. (2007)) of all PID parameter convenient
in the whole polygon. For a more comfortable methodology
see Hohenbichler and Abel (2009). Fig. 5 b) illustrates
a 2D subset of the PID parameter combinations of the
system G3(s). In this example the polygon five leads to a
stable closed loop system. Fig. 5 a) shows the PID space of
G3(s) without parameter uncertainties. In the comparison
of the two results it can be seen that the RRB does not
change its shape. In the case of the CRBs, the single-
lines transforms to bands. This has the consequence that
the stability area A* of b) gets smaller, caused of the
parameter uncertainties. Most strongly increases the left
boundary because the corresponding range of the third
zero wy interval is very large with consideration of the
parameter uncertainties. This can be deduced from Fig. 3.

Fig. 5. Parameter areas: a)Robust approach b)Original

The introduced method provides the boundaries only for
the K;/Kp space on one fixed Kp. To add some K;/Kp
planes for several Kp values, only the CRBs must be
updated (see equation (9)). Hence, the shape of the stable
polygons can only change a bit and the computational
effort is relatively low. To take into account the potential
Kp-value range, the eligible Kp interval must be calcu-
lated. To do this, the algorithm from Hohenbichler (2008)
is used. For each of the K p values a new 2D plane results.
At the end, of the calculation algorithm, a 3D polygon
which shows all PID parameter combinations is created.
To finish the parameter tuning method, one parameter
combination of this 3D parameter space must be chosen.

6. PERFORMANCE REQUIREMENTS

The choice of problem specific PID parameters in the
3D parameter space sounds trivial. But in practice, it is
difficult because it is hard to identify how the controller
performance depends on the PID parameter location. One
idea to solve this problem is parameter optimization. The
goal of this method is that one optimization criteria can
be selected (time/energy optimality in sens of LQR) and
a parameter estimation algorithm computes the best PID
parameter combination with respect to the borders of the
stable PID space. On the one hand, for unexperienced
users, the controller parameterization gets more easy be-
cause it is almost completely automatic and requires no
detailed control theory knowledge. On the other hand for
experienced users, a good starting value for the PID fine
tuning (loop shaping or root locus method) results from
this optimization. For benchmarking the performance of
the system dynamics, the ideal step response is used. The
optimization is done by MATLAB and Acapo (Houska
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and Ferreau (2011)). ACADO provides powerful opti-
mization algorithms and allows to set a lot of restrictions
remain for the states (e.g. no overshoot) and the control
value. The available parameter space can easily set to the
optimizer, because the PID space is only limited by linear
straight. Therefore the K;/Kp parameter space can be
divided, but each parameter space piece is always convex.

Another task is to find the PID-parameter combination
that guarantees maximum robustness. As described previ-
ously, the RRB is constant, the IRB bands are increasing
linearly and the CRBs are nonlinearly by variation of the
system parameters and the time delay (see Fig. 5). So, it is
not trivial to find the parameter combination of maximum
robustness. During the application the area middle point
(based on Weller (2008)) has been confirmed repeatedly
as a good approach to achieve maximum robustness.

As mentioned before, one method for the controller fine
tuning is the loop shaping of the frequency response. The
idea of the loop shaping approach is that the user can set
performance quality requirements in form of a sensitivity
and complementary sensitivity function to the magnitude
of the frequency response plot (in the sense of He.).
Then an least square optimizer minimizes the deviation
to the required frequency responses. The constraints like
the 3D PID parameter space can be easily included in the
optimizer and a piecewise convex (with precise knowledge
of the convex area locations) optimization problem results.

A second method for the fine modification of the PID
parameters is the root locus method. This method is
extend to time delay systems by using a new branch and
follow method, based on the root locus construction rules
(Palm (1986)) of time delay systems.

7. CONCLUSION

The parameter space approach emerges as a convincing
and easily understood method to compute the stable re-
gions in the PID parameter spaces. An easy way to modify
the parameter space approach to a one step procedure
to guarantee robust stability was demonstrated. The pre-
sented approach explicitly considers uncertainties in the
system parameters and time delay with only small conser-
vatism. The challenging task of robust stability of time de-
lay systems was converted to an easer minimum /maximum
search to estimate the borders of the root boundary bands.
To realize this, it must be calculated how the root bound-
aries change due the variation of system parameters. The
transfer of the classic two step parameter space approach
to a one step approach is achieved by the continuous con-
sideration of the shift of the root boundaries with respect
to the system parameter variation. To fix the drawback of
the difficult choice of the most suitable PID parameters
in the stable parameters space, several approaches for au-
tomatic criteria optimization and for additional controller
fine tuning were briefly illustrated.

A major advantage for the industrial application of
the proposed method is the great transparency and
simplicity of the presented approach. The approach
uses a very intuitive method and avoids completely
more complex methods such as the Lyapunov stabil-
ity. The whole methodology presented in this paper
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will be integrated in a MATLAB toolbox called PIDro-
bust. A preliminary version of the tools can be down-
loaded on the PIDrobust website http://www.irt.rwth-
aachen.de/en/fuer-studierende/downloads/pidrobust.

Future work will deal with the improvement of the opti-
mization strategies and the finalizing of the parameter tun-
ing methods. Additionally, an extension of the controller
classes (e.g. state feedback and sliding mode) is planned.
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