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Abstract: This paper describes i-pIDtune, an interactive software tool that integrates system
identification and PID controller design. The tool supports experimental design and execu-
tion under plant-friendly conditions, high-order ARX estimation, and control-relevant model
reduction leading to models that comply with the IMC-PID tuning rules. All these stages
are depicted simultaneously and interactively in one screen. Thus, i-pIDtune allows to display
both open- and closed-loop responses of the estimated models and important control-relevant
validation criteria, what enables the user to readily assess how design variable choices, control
performance requirements and model error can impact the achievable closed-loop performance
from a restricted complexity model estimated under noisy conditions.

Keywords: PID design, Control-relevant identification, interactivity, prediction-error
estimation, experimental design.

1. INTRODUCTION

Despite significant strides in the development of advanced
control schemes over the past two decades, the basic PID
controller and its variants remain the controllers of choice
in many industrial applications. As many as 95% of all
control loops in the process industries employ a PID-
type algorithm (Åström and Hägglund, 2006). While the
computational ability of modern-day distributed control
systems continues to increase, PID controllers remain a
favorite because of their structural simplicity, reliability,
and favorable ratio between performance and cost. Beyond
these benefits, PID control offers simplified dynamic mod-
eling, lower user-skill requirements, and reduced develop-
ment effort, which are issues of substantial importance
to engineering practice. Internal model control (IMC) is
a systematic procedure for control system design based
on the Q-parametrization concept, which forms the basis
of many modern control design techniques (Morari and
Zafiriou, 1989). The IMC design procedure applied to low-
order transfer functions common to process system appli-
cations results in model-based tuning rules for PID-type
controllers. A single adjustable parameter in these IMC-
PID tuning rules specifies the closed-loop speed of response
and directly influences the robustness of the closed-loop
system (Rivera et al., 1986), (Rivera and Flores, 2004).

By integrating system identification and IMC-PID con-
troller design, high-performance controllers are simpler to
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obtain than if the two tasks are conducted independently.
Achieving such synergism is the motivating philosophy
behind the methodology included in the interactive tool
which is described in this article. PID controller tun-
ing starting from input-output data is a well-understood
problem when the plant is free of disturbances and high
noise. PID tuning from process reaction curves and relay
tuning (Åström and Hägglund, 2006), (Atherton, 1999),
(O’Dwyer, 2003) are techniques that work well in low
noise circumstances. However, many PID control problems
of practical industrial significance do not fall into this
category, and system identification for PID control include
important challenges in these cases.

System identification focuses on the building of dynamical
models from data (Ljung, 1999). It is often considered
the most challenging and time consuming step in control
engineering practice and thus represents an important
component in the professional training of any control engi-
neer; to this end, flexible and simple-to-use software tools
are essential. Classical system identification is focused on
satisfying “open-loop” criteria that may lead to high-order
models that are not directly suitable for control design.
However, by taking into account controller requirements
during system identification, it becomes possible to both
simplify the modeling task and improve the usefulness
of the model with respect to the intended application of
control design; this is the essence of control-relevant iden-
tification (Rivera et al., 1992; van den Hof and Callafon,
2003).

In recent years, advances in information technologies have
provided powerful software tools for training engineers
(Dormido, 2004; Guzmán et al., 2009). Moreover, inter-
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active software tools have been proven as particularly
useful techniques with high impact on control education
(Guzmán et al., 2005, 2008). Interactive tools provide a
real-time connection between decisions made during the
design phase and results obtained in the analysis phase of
any control-related project. Prior work involving the au-
thors has resulted in ITSIE, an Interactive software Tool
for System Identification Education (Guzmán et al., 2009)
and ITCRI, and Interactive Tool for Control Relevant
Identification. ITSIE focuses exclusively on open-loop
system identification and ITCRI deals with the control-
relevant identification based on prefiltered prediction-error
estimation procedures. The main objective of this paper
is to describe the theory, features, and application of i-
pIDtune, an interactive tool that integrates system iden-
tification and PID controller design. This tool provides
an interactive version of a preliminary tool presented in
(Flores and Rivera, 2000), which was developed for Mat-
lab. i-pIDtune considers the estimation of a high-order
ARX model and control-relevant model reduction to ob-
tain models consistent with the Internal Model Control
(IMC) PID tuning rules. Validation criteria allow the user
or student to check open-loop and closed-loop criteria,
for instance, how open-loop error in the model translates
into adequate or poor closed-loop behavior. Furthermore,
the tools allows the user to simulate closed-loop behavior
and provides analysis tools for assessing the benefits of
choosing particular tuning parameters for setpoint track-
ing and load disturbances. The interactive tool is coded in
Sysquake, a Matlab-like language with fast execution and
excellent facilities for interactive graphics (Piguet, 2004).

2. THEORETICAL BACKGROUND

This section summarizes the major steps of the identifica-
tion methodology for IMC-PID tuning, which are included
in the proposed interactive tool. These steps include exper-
imental design and execution, high-order ARX estimation,
and control-relevant model reduction leading to models
that comply with the IMC-PID tuning rules.

2.1 Plant to be identified and controlled

The plant to be identified within the interactive tool,
and subsequently controlled, consists of a discrete-time
system sampled at a value specified by the user (default
value Ts = 1 min) and subject to noise and disturbances
according to:

y(t) = p(q)(u(t) + n1(t)) + n2(t) (1)

where: y(t) is the measured output signal, u(t) is the
input signal that is designed by the user, p(q) is the
zero-order-hold-equivalent transfer function for p(s) and
q is the forward-shift operator, n1 is a stationary white
noise that allows to evaluate the effects of autocorrelated
disturbances in the data and n2 is another stationary white
noise that is introduced directly to the output signal.

2.2 Experimental design and data preprocessing

The success of the identification methodology hinges on
the availability of an informative input/output data set

obtained from a sensibly designed identification experi-
ment. The input signals used in this work are: (i) Pseudo-
Random Binary Sequences (PRBS) and (ii) multisine
signals. In i-pIDtune, the input signal can be designed
through direct parameter specification or by applying time
constant-based guidelines. The input signal guidelines and
parameters are shared with the previous works, and thus,
for the sake of brevity the interested reader is referred
to (Guzmán et al., 2009) for a detailed description. Data
preprocessing in i-pIDtune supports mean subtraction,
differencing, and substraction of baseline values.

2.3 ARX Model Estimation

The interactive tool uses data from (1) to estimate a
prediction-error (PEM) model characterized by an Au-
toRegressive with eXternal input (ARX) model structure

A(q)y(t) =B(q)u(t− nk) + e(t) (2)

y(t) = p̃(q)u(t) + p̃e(q)e(t) (3)

where p̃(q) refers to the estimated plant model and p̃e(q)
is the noise model. A(q), and B(q) are polynomials in q,
while nk is the system delay, represented as an integer
multiple of sampling intervals.

ARXmodel estimation possesses two attractive properties,
namely, computational simplicity and consistency. The
parameters of (2) can be determined by minimizing the
squared prediction error

arg min
p̃,p̃e

1

N

N∑
i=1

e2(i) = argmin
θ

1

N

N∑
i=1

[
y − ϕT (t|θ)θ]2 (4)

where N represents the number of data, θ is a vector
including the model parameters to be identified and ϕ(t|θ)
is the model output for a given combination of the model
parameters θ.

The use of Parseval’s Theorem enables a frequency-domain
analysis of bias effects in PEM estimation that allows deep
insights into the selection of design variables for these
techniques. As the number of observations N → ∞, the
least-squares estimation problem denoted by (4) can be
written as

lim
N→∞

1

N

N∑
i=1

e2(t) =
1

2π

π∫
−π

Φe(ω)dω (5)

where Φe(ω), the prediction-error power spectrum is

Φe(ω) =
1

|p̃e(ejω)|2
(|p∗(ejω)− p̃(ejω)|2Φu(ω)

+ |p∗(ejω)|2σ2
n1

+ σ2
n2

)
(6)

Equation (6) helps explain systematic bias effects in iden-
tification, which can be readily explored in i-pIDtune. This
includes issues relating to the spectral content in the in-
put signal and the associated multi-objective optimization
problem resulting from varying magnitudes of the noise
variances σ2

n1
and σ2

n2
.

In this work, the ARX model structure selection is ac-
complished through the use of cross-validation. In cross-
validation, a data set other than the estimation data set
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is used to determine the predictive ability of a model.
Because ARX estimation consists of solving a linear least
squares problem (4), repeated estimation can be applied
using a large number of model structures without incurring
significant computational burden. A set of model struc-
tures is obtained by specifying a range for the orders of
the model described in (2): na, nb and nk. The model
structure that minimizes the loss function displays the
lowest percent unexplained variance in the output.

2.4 Control-Relevant Model Reduction for IMC-PID

The application of the internal model control (IMC) design
procedure to establish PID tuning rules is described in
detail in (Morari and Zafiriou, 1989) - (Rivera and Flores,
2004). The IMC design procedure is a two step design pro-
cess that provides a suitable tradeoff between performance
and robustness. In the first step a stable and causal Q-
parametrized controller is obtained that is optimal with
respect to norm criteria on the control error. In the second
step, the controller from Step 1 is enhanced with a low-
pass filter to ensure that the controller is proper. Filter
parameters are used to tune the control system for robust-
ness or a desired speed-of-response, and can be adjusted
on-line once the controller is commissioned. For many
simple models of interest to process control applications,
the IMC controller implemented in classical feedback form
leads to a PID-type controller. Table 1 contains IMC-PID
tuning rules for first- and second-order models with RHP
(Right Half Plane) zero. More comprehensive tables with
additional entries are found in (Morari and Zafiriou, 1989)
- (Rivera and Flores, 2004) and (Rivera and Jun, 2000).

Model KKc τI τD τF
K(−βs+1)

τs+1
τ

β+λ
τ - -

K(−βs+1)

τ2s2+2ζτs+1
2ζτ
β+τ

2ζτ τ
2ζ

-
K(−βs+1)

τ2s2+2ζτs+1
2ζτ

2β+λ
2ζτ τ

2ζ
βλ

2β+λ

Table 1. IMC-PID tuning rules for first and
second-order plants without integrator and
with nonminimum phase zero β > 0. The
general PID controller form is represented by

c(s) = Kc(1 +
1

τIs
+ τDs) 1

(τF s+1) .

For plants with delay or higher than second-order, a model
reduction step is necessary in order to arrive at a model
that conforms to the IMC-PID tuning rules. Here, we
apply control-relevant model reduction to directly obtain
reduced-order models without delay that conform to the
IMC-PID tuning rules in Table 1. i-pIDtune allows to
obtain and to compare these three tuning rules for PI,
PID and PID with filter designs interactively on the same
screen. The model reduction procedure is based on the
control-relevant approach described in (Rivera andMorari,
1987). In this framework, the frequency bandwidth over
which a good model fit is necessary dictated by the IMC-
PID tuning rule, the value for the IMC filter parameter λ,
and the setpoint-disturbance direction faced by the closed-
loop system. Consider the model reduction problem arising
from minimizing the 2-norm of the control error ec = r−y

J1 = ‖ec‖2 =

⎛
⎝

∞∫
0

| ec(t) |2 dt

⎞
⎠

1/2

. (7)

The closed-loop system resulting from a feedback con-
troller c(s) designed from the estimated model p̃ is char-
acterized by the nominal sensitivity operator ε̃ = (1 +
p̃c)−1 and complementary sensitivity operator η̃ = p̃c(1 +
p̃c)−1. For c(s) implemented on the true plant model p,
the control performance deterioration caused by mismatch
between plant and model is represented by

ec =
ε̃

1 + η̃ em
(r − d), (8)

where em = (p− p̃)p̃−1 is the multiplicative error between
the true plant and the estimated model, and d represents
the load disturbance. Nominal closed-loop stability ap-
plying c on p̃ does not guarantee stability with regards
to p. Stability of the control system is most rigorously
determined by applying the Nyquist Stability Criterion on
η̃ em. A sufficient condition and computationally simpler
requirement is the Small Gain Theorem

|η̃(jω)em(jω)| ≤ 1 for all ω. (9)

When (9) holds, (8) can be expanded into a Taylor series
which is truncated after the first term to yield

ec ≈ ε̃(1− η̃em)(r − d). (10)

The previous approximation (10) is especially valid when
|η̃(jω)em(jω)| � 1 over the bandwidth defined by ε̃(r −
d). Substituting (10) into (7), we obtain an approximate
expression for the objective function which written in the
frequency domain using Parseval’s Theorem has the form

‖ec‖2 ≈
⎛
⎝ 1

π

∞∫

0

|ε̃|2|1− η̃em|2|r − d|2dω
⎞
⎠

1/2

(11)

≤
⎛
⎝ 1

π

∞∫

0

|ε̃|2|r − d|2dω
⎞
⎠

1/2

+

⎛
⎝ 1

π

∞∫

0

|ε̃|2|η̃em|2|r − d|2dω
⎞
⎠

1/2

. (12)

Note that (12) has one term based on the nominal prop-
erties of the closed-loop response and a second term based
on the reduction error em. The statement of the control-
relevant parameter estimation problem is obtained by
minimizing the contribution arising from model reduction
error in the second term, that is,

min
p̃

⎛
⎝ 1

π

∞∫
0

|ε̃(jω)|2|η̃(jω)|2|r − d|2|em(jω)|2dω
⎞
⎠

1/2

. (13)

The control-relevant parameter estimation problem (13)
minimizes the weighted 2-norm of the multiplicative error,
as opposed to the unweighted 2-norm additive error (ea =
p− p̃) that is commonly examined in the control literature.
The weight function |ε̃η̃(r − d)| explicitly incorporates
the desired closed-loop shape and speed of response, as
well as the setpoint and disturbance characteristics of the
problem.

The interactive tool includes a frequency-weighted curve-
fitting algorithm presented in (Rivera and Morari, 1987) to
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solve the model-reduction problem in (13). The algorithm
of (Rivera and Morari, 1987), which relies on the iterative
solution of a linear least-squares problem in the spirit of
(Sanathanan and Koerner, 1963), is computationally fast,
what allows interactive analysis in i-pIDtune.

2.5 Model validation

i-pIDtune provides classical methods for validation such
as simulation, crossvalidation, residual analysis on the
prediction errors and step responses. The percent out-
put variance on the crossvalidation data set is also re-
ported. Furthermore, the most informative form of control-
relevant validation is the closed-loop response resulting
from the estimated model, which in i-pIDtune is contrasted
simultaneously with the open-loop response.

3. INTERACTIVE TOOL DESCRIPTION

This section is devoted to describe the mean features of the
interactive tool. However, it is important to mention that
interactivity which is the main feature, cannot be noticed
in a written text. Thus, the reader is cordially invited
to download the tool at http://aer.ual.es/i-pidtune/
(see Fig. 1) and personally experience its interactivy.

The graphical distribution has been designed according to
the most important steps in a control-relevant identifica-
tion. It is described as follows (see Fig. 1):

• Input signal definition. In the main screen, at the
top left corner, there is a section called Input signal
parameters. Here, the user can choose the type of
the input signal (PRBS or multisine) and by means
of the checkbox called Guidelines to decide between
specifying the input signal directly or following the
guidelines given in (Guzmán et al., 2009). For in-
stance, if the PRBS is selected without activating the
checkbox Guidelines, a text edit and two sliders appear
to modify the number of cycles (N Cycles), the number
of registers (N Reg), and the switching time (Tsw).
At the top center and top rigth corner, there are two
graphics namely Input signal and Power Spectrum or
AutoCorrelation depending on the chosen option. The
graph in the center, Input signal, shows one cycle of
the input signal, the graph below represents the input
signal correlation or the input signal power spectrum
depending on the chosen option in the radio buttons
at the top right of the graph. The input signal can
be modified dragging on both graphics too. Once an
input signal has been configured, the final input signal
is shown in Full input signal graph, located at the left
of the central part of the main screen.

• Model estimation. In the bottom central part of the
screen, there is a section called Model parameters,
where the resulting parameters na, nb and nk for the
high-order ARX model, ARX OS, are shown.

• Closed-loop specification. In the section Closed loop
and simulation parameters, below the Model parame-
ters section, the parameter λ for the IMC filter time
constant, which is used by the IMC-PID tuning rules
presented in Table 1, is specified through a slider
called Lambda. Below this slider, other two sliders
called Noise 1 and Noise 2 determine the level of

noise in the data, n1, and in the output signal, n2,
respectively. Furthermore, the desired resulting con-
trollers PI, PID or PID with filter can be selected from
three checkboxes appearing in these same area of the
tool. Once the type of the controller is selected, the
corresponding control-relevant model (see Table 1)
is identified and the associated controller parameters
are calculated and shown below these checkboxes.

• Model validation. The magenta-colored vertical line
of the Output signal graphic is interactively used to
define the estimation (yellow area) and validation
data (white area) sets. The validation data is used
for crossvalidation purposes. Model validation results
are displayed in other two different graphics: Step
Responses and Correlation function of residuals. The
Step Responses graph, which is located at the lower
left-hand side of the tool, shows the step responses
for the following models: (i) ARX-OS: an ARX high-
order model, green line, (ii) PI model: control-relevant
model for PI controller tuning, red line, (iii) PID
model: control-relevant model for PID controller tun-
ing, blue line, and,(iv) PID with filter model: control-
relevant model for PI controller with filter tuning, ma-
genta line. For high-order ARX model, its goodness
of fit in % is also showed. Confidence intervals can be
also shown in this graphic activating this option from
the Parameters menu for the high-order ARX model.

• Closed-loop response. At the lower right corner of the
tool, there are two graphs that show the closed-loop
response of the resulting feedback control system.
These graphs are called Closed-loop output where
the output of the closed loop is showed and Closed-
loop input, where the output of the calculated IMC
controller is displayed.

4. ILLUSTRATIVE EXAMPLE

In this example, a simulated fifth-order system is consid-
ered. The system is represented by the transfer function:

p(s) =
1

(s+ 1)5
(14)

with a default sample time of Ts = 1 min. The main aim of
this example is to analyze the control-relevant method and
to compare the resulting PID controller designs. Results
are shown in Fig. 1 and 2. A PRBS input signal is used for
identification, with parameters: m = 8 (number of cycles),
αs = 2, (factor representing the closed-loop speed of
response), βs = 3 (factor representing the settling time of
the process), τLdom = 3 (low estimate of τdom) and τHdom = 5
(high estimate of τdom). For more information about these
parameters see (Guzmán et al., 2009). Moreover, the noise
on the output signal, n2(t) in Eq. (1), is augmented to a
value of 5.3, whereas the noise on the disturbance (n1(t)
in Eq. (1)), is set to 1.5.

A high-order ARX model, ARX-[6 4 1], is obtained from
this identification signal. Its open loop response is shown in
the Step Responses graph (ARX-OS), at the lower left-hand
side of the tool, together with the response of three control-
relevant models for PI, PID, and PID with filter. The
validation criteria indicates the poor fit of the ARX model.
This is due to the high value of the noise signals n1 and n2,
since ARX model estimation involves a tradeoff between

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WeB2.3



Fig. 1. Main screen of i-pIDtune, displaying results for the illustrative example explained in Section 4.

the fit to the noise model and the fit to the transfer
function. However, despite this poor fit of the ARX model
from an identification point of view, this result is a very
important contribution for control-relevant design. Notice
the highly noisy data which is being evaluated (see the
graphic Output Signal). The ARX model allows to clean
that noisy data and obtain the main process dynamics,
which is then used to estimate the reduced control-relevant
models. These identification procedure would be very
difficult to perform from conventional methods based on
process reaction curve and relay tests.

Regarding the closed-loop parameters, the parameter λ
of the IMC controller is set to λ = 2.4. The open-loop
response of the resulting reduced models are shown in Step
Responses graph. It can be observed how the model for PID
controller with filter is the one obtaining a closer response
to the high-order ARX model. The inputs and outputs
of the resulting feedback system are shown in Closed-loop
input and Closed-loop output graphs, respectively. Notice
the poor performance of the closed-loop system for the
PI controller (red solid line), with a large overshoot of
55 % of the setpoint change magnitude. This fact is due
to the bad fit of the open loop model for this controller.
From the Step Responses graph, it is possible to note
how there is a substantial mismatch in the static gain
between the PI model and the high-order ARX model,
ARX-OS. This mismatch is even higher when the resulting
PI model is compared with the real system (black solid
line). Furthermore, the PI model presents an important
non-minimum phase behavior, what clearly reduced the
bandwidth of the closed-loop system. Remember that the
proposed control-relevant model reduction method tries to
estimate a model without delay, for the model structures

described in Table 1. In case of PID and PID with filter,
the closed-loop responses are much better than for PI.
The reason is that the resulting control-relevant models
for these cases are much better, as can be observed in
Step Responses graph. Notice how both models, PID model
and PID with filter model have a similar response, having
the PID with filter model a better static gain estimation.
These models, PID model and PID with filter model, present
a better estimation in the non-minimum phase zero than
the PI model, what allows to reach a higher closed-loop
bandwidth. This can be clearly observed in the closed-
loop responses, where for the same required closed-loop
specification, λ, the PID and the PID with filter controllers
show a much better performance.

When the closed-loop specification is relaxed, for instance
for λ = 10, the estimation for the three models, PI model,
PID model and PID with filter model provides very similar
responses and practically the same closed-loop responses
are obtained for the three cases, such as shown in Fig. 2.

5. CONCLUSIONS

This paper describes an interactive tool integrating sys-
tem identification and IMC-PID controller design. By us-
ing i-pIDtune it is possible to achieve interactively such
synergism, being that the motivating philosophy behind
the methodology described in this paper. The tool pro-
vides different functionality modes which make possible
to use its capabilities for students and engineers with a
small learning curve. The tool is available for free from
http://aer.ual.es/i-pidtune/. The interactive tool al-
lows the student to analyze a straightforward control-
relevant procedure and to compare the closed-loop results
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Fig. 2. Results for the illustrative example explained in Section 4.

from different reduced models. Future work will be ori-
ented to include other techniques for the identification
phase (such as the step response analysis by the method
of areas or similar ones) and for the PID tuning stage,
where comparisons among different methods could be in-
teractively performed with the tool.
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