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Abstract: Since the PID tuning formula of Ziegler-Nichols step test, perhaps the best known, the process 

control literature is still showing lots of PID control schemes to improve the closed-loop stability. In this 

paper, using the relationship between the PID and generalized minimum variance (GMV) controller and 

adjusting online the control weighting factor by an adaptive learning algorithm of first-order (gradient 

method), a new control design is investigated. Besides, the control algorithm is gathering the direct 

estimation technique, with the covariance resetting procedure based on the weighted prediction error, to 

deal with nonlinear plants. Numerical and practical experiments are shown to evaluate the behavior of the 

proposed GMV-PID control design. 
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1. INTRODUCTION 

 

The importance of the PID controller in the industry is related 

to factors such as simplicity, stability and performance. At 

least three parameters must be set and sometimes they need 

an online retuning in complex environments, i.e., due to plant 

parameters variations (Åström and Hägglund, 2006; Visioli, 

2006; Gude et al., 2006). Depending on the cleverness of the 

operator, the parameter tuning procedure can vary from 

seconds to hours, especially for slow dynamic or in nonlinear 

plants. To deal with these real loop situations, it is possible to 

find, in books and conference papers, many automatic tuning 

approaches where success and failure cases are reported in 

the following industries: chemical, petrochemical, 

metallurgy, pulp and paper, electrical, mechanical, etc. (Ang 

et al., 2005). In this scenario there are projects related to the 

PID tuning where the combination with other control 

strategies are applied in order to guarantee the robustness of 

the control loop. Internal Model Control (IMC) and 

Generalized Minimum Variance (GMV) control 

methodologies are of great importance because they can 

acquire different closed-loop characteristics such as model 

reference, detuned behavior and time-delay compensation  

(Gude et al. 2006; Veronesi and Visioli, 2011). A good 

example is the work of Cameron and Seborg (1983) 

hybridizing the GMV design with the PID tuning, where 

excessive actuator movements can be avoided and non-

minimum phase plants can be controlled. However, due to the 

fixed tuning, the performance of GMV-PID controller can 

degrade or even become unstable when applied to nonlinear 

processes. In addition, self-tuning control strategies are 

becoming conventional methods and a considerable number 

of successful experimental studies have been carried out in 

PID and GMV over the last years (Doi and Mori, 2002; 

Hägglund and Åström, 2000; Kirecci et al., 2003). The idea 

of using direct parameter estimation is good because the 

GMV-PID linear controller design is based on a linear model 

that is obtained in the operating point vicinity and the 

performance specifications is not guaranteed in the whole 

operating range. To avoid the drawback of fixed GMV-PID 

parameters damaging the transient response, a gradient 

method is combined into the GMV-PID framework. 

Therefore in this paper, the adaptive character is implemented 

by means of two online adjustable ways: direct estimation of 

the GMV-PID parameters and learning method to optimize 

the energy weighting factor of the controller. The direct 

GMV-PID control design proposed in this paper differs from 

the existing GMV-PID controller of Cameron and Seborg 

(1983) and Yamamoto et al. (1999), where they only employ 

a recursive algorithm to identify the controlled plant 

parameters. The process response and control signal can be 

visualized from simulations with the proposed control-loop 

strategy. Comparison with conventional tuning sets is done. 

 

2. GMV BASED PID CONTROLLER DESIGN 

 

2.1 Process Description 

 

Many experimental plants can be well described by the 

following First-Order Plus Dead-Time (FOPDT) model 

(Åström and Hägglund (2006): 
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where Kp,  and θ denote the process gain, time-constant and 

time-delay, respectively. In order to ensure a second-order 

model for controller design purpose, it is possible to use a 

first-order lag element for the time-delay and (1) can be 

rewritten as 

)1s)(1s(

K
)s(G

p

m


                          (2) 

The discrete-time model, obtained from (2), called Controlled 

Auto-Regressive (CAR) model, is given by 
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and y(t), u(t) and (t) are the process output, control input and 

white noise. Furthermore, z-1 denotes the backward shift 

operator, namely, z-1y(t) = y(t-1). 

 

2.2 PID Controller Structure 

 

The following digital PID control law, in parallel form, is 

considered (Bobál et al., 2005; Visioli, 2006): 

)]2t(e)1t(e2

)t(e[K)t(eK)]1t(e)t(e[K)t(u dic




      (5) 

where Kc, Ki and Kd are the tuning parameters and represent 

the proportional, integral and derivative gains, respectively. 

In addition, e(t) = yr(t) – y(t) is the system error and yr(t) is 

the reference signal. Assuming that the reference appears 

only in the integral part and the output is filtered, yf(t), then 

for the GMV control design, (5) is modified and can be 

rewritten as 

)2t(yK)1t(y)K2K(

)t(y)KKK()t(yK)t(u

fdfdc

fdicri




          (6) 

The closed-loop system performance strongly depends on 

PID parameters. These parameters can be computed with the 

GMV-PID control tuning scheme, which have been already 

proposed by Cameron and Seborg (1983) and Yamamoto et 

al. (1998), using the trial and error procedure. However, due 

to the difficult to tune a design parameter of the GMV, that 

weights the energy of the control signal, and to avoid a fixed 

value that can be unfeasible in nonlinear essays, this paper 

proposes an on-line adaptive learning procedure to estimate it 

that is desirable as a systematic way for practical 

applications. 

 

2.3 GMV Based PID Parameter Tuning 

 

The derivation of GMV-PID controller proposed in Cameron 

and Seborg (1983) is reviewed. To design the GMV 

controller it is assumed that the monovariable controlled 

system is modelled by (3) and, additionally, an auxiliary 

output is defined as follows: 
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with P(z-1), Q(z-1) and R(z-1) being weighting polynomials. If 

the input-output data are known until time t, the (t+1) can 

be regarded as estimating y(t+1) by 
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where E(z-1) and F(z-1) are obtained by the identity 
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-1)/Pd(z

-1) = P(z-1). Assuming G(z-1) = E(z-1)B(z-1) 

then (8) is rewritten as follows: 
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where (t) = E(z-1)ξ(t+1) and yf(t) is the filtered output 

defined by 
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Therefore, from (7) and (9) and forcing to zero the 

deterministic part of (t+1), the GMV control law is given by 
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To ensure that the GMV in (10) has the PID structure of (6) it 

is necessary to define the polynomials F(z-1) and R(z-1) as 
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The derivation of R(z-1) = H(1) is to ensure steady-state 

agreement between output and reference signals. As the final 

design step, the integral action must be introduced by setting 

the Q(z-1) polynomial as 
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where   is a design parameter. If (12) and (13) are 

substituted into (10), then the corresponding settings of the 

GMV-PID control law are expressed as 
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The choice of  modifies the closed-loop behavior of the 

controlled system. Large values of  will tend to result in 

more vigorous control and underdamped responses while 

small values of  will tend to provide more sluggish control 

and overdamped responses. Therefore for real applications, it 

is desirable to have a systematic approach for obtaining an 

adequate value of , avoiding the time-consuming trial and 

error procedure, that sometimes sets an inadequate value 

which may lead to an unstable dynamic. 

 

2.4 Optimizing the Weighting Factor of the GMV-PID 

Controller 

 

To tune the design parameter  of (14), which is constrained 

between 0 and 1, a sigmoid function is employed to map the 

space [0 1] to the entire real number space as follows: 
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with (t) being a real number. Using (16) the parameter (t) 

is calculated updating (t) according to the gradient method, 

such that 
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where the parameter (t) = 0/t (0 < 0 < max) regulates the 

stability, convergence velocity and must be selected for each 

application. The cost function J has the form 
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with λ as the weighting parameter. In order to calculate the 

gradient J/(t) the chain rule is applied as follows: 
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where 

)]1t(u)t(u[2
)t(u

)1t(
)]1t(u)z(G

)t(y)z(F)1t(y)z(P[2
)t(u

J

y1

f
1

r
1
















      (20) 

]g)z(G[z)z(G 0
11    ; 0

y
g

)t(u

)1t(





 

)t(y)zf()t(y)f(
)t(

)t(u
2

0i

i
ir

2

0i

i 










            (21) 

)]t(1)[t(
)t(

)t(





                         (22) 

 

2.5 Updating the Weighting Factor with Cameron-Seborg 

Tuning 

 

The scalar parameter (t), in (14), provides a convenient 

tuning parameter for the GMV-PID controller. For practical 

applications, it is desirable to have a satisfactory initial 

estimation procedure before actually implementing the digital 

control signal. So, for the purpose of comparison, the 

Cameron and Seborg (1983) tuning method is employed as 

the standard control design. Then, (t) can be well tuned 

based on the discrete model of (1) such as 
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where )a1(Kb 1p0  , )/Texp(a s1  , sT/d   and Ts 

is the sampling period. Cameron and Seborg (1983) have 

demonstrated that, based on the characteristic equation and 

the Jury stability method, the maximum value of (t), to 

guarantee closed-loop stability for d = 0 and d = 1, is given, 

respectively, by 
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In practical applications, it is desirable that the estimated 

value of (t) be conservative to avoid closed-loop dynamics 

with oscillatory or unstable behavior. Hence Cameron and 

Seborg (1983) have recommended that (t) = βvmax (t) be 

used where 0 < β < 1. A value of β = 0.1 or β = 0.2 can 

provide a satisfactory calibration for (t) if the process is 

open-loop stable. 

 

2.6 Direct Adaptive Estimation of the GMV-PID Controller 

 

For the GMV-PID control law synthesis, in the direct 

adaptive framework, a parametric estimation scheme is based 

on the recursive least-squares algorithm with covariance 

resetting. The estimator is derived from (9) assuming that 

F(z-1) = f0 + f1z
-1 + f2z

-2 and G(z-1) = g0 + g1z
-1. Parameters 

and measurements vectors are given by 
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and the estimated parameters are updated using the standard 

recursive least-squares estimator 
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where K(t) and P(t) are the estimator gain and covariance 

matrix, respectively. To deal with inaccuracy, robustness, 

interactions between the estimator-controller and time-

varying plants, the covariance resetting procedure is 

employed. Hence, the covariance matrix is calculated in the 

traditional way, i.e., P(t) = P(t) + Q(t). The reset of P(t) is 

based on the weighted prediction error which is determined 

as follows: 
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with )1t()t()t(y)t(e T
est   . At every discrete-time 

instant, a moving window of Ne values is used to calculate the 

weighted prediction error and the matrix Q(t) is added only 

when the weighted prediction error value exceeds a tolerance 

error, etol, given by the user. This kind of behavior is 

appropriate not only to reduce undesirable covariance 

resetting due to process noise but also to provide good 

accuracy for tracking time-varying parameters. 

 

3. NUMERICAL AND EXPERIMENTAL SIMULATIONS 

 

The effectiveness of the proposed adaptive GMV-PID 

controller is assessed on two simulation examples. As the 

first essay, a linear time-invariant plant is given by the 

following equation: 

4p
)1s(

1
)s(G


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User specified parameters are set to P(0) = 200I5x5, θ(0) = 

0.01, P(z-1) = 1, (0) = 1, (0) = 0, max = 20, λ = 2 and Ts = 

1 s. The behavior of the closed-loop system, for two setpoint 

values, is shown in Figure 1. Figure 2 shows the trajectory of 

(t), with final value of 0.1097. PID parameters at the end of 

the simulation become Kc = 0.0235, Ki = 0.0836, Kd = 

0.0255. 

 

It is possible to observe that the GMV-PID control system 

provides a good performance with a short settling time, 

without overshoot and the control variable presents a smooth 

response that is important from the viewpoint of practical 

implementations. 
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Fig. 1. Process output for the proposed GMV-PID controller. 
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Fig. 2. Behavior of the design parameter (t). 

 

To evaluate the behavior of the controlled forth-order process 

with the adaptation of the weighting factor with Cameron-

Seborg procedure, a FOPDT model is employed as 

1s2.3

e
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m
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Parameters are set to P(0) = 200I5x5, θ(0) = 0.01 and  = 0.2. 

The behavior of the closed-loop system, under the same 

setpoint values, is shown in Figure 3, with (t) = 0.3736 (t). 

PID parameters at the end of the simulation are Kc = 0.1201, 

Ki = 0.2975, Kd = 0.0503. Now the response is oscillatory, 

exhibits overshoot and the settling time is a little bit higher. 

 

For the purpose of comparison, if the Ziegler-Nichols PID 

setting is employed then an unstable dynamic is achieved. 

Figure 4 illustrates the response with the AMIGO tuning rule 

for the PID controller where the closed-loop system has 

sluggish behavior with a longer settling time (O’Dwyer, 

2000; Åström and Hägglund, 2004; Ang et al., 2005). So, the 

numerical results indicate that the proposed GMV-PID 

control provides the best responses. 
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Fig. 3. Output for the GMV PID tuned by Cameron-Seborg. 

0 50 100 150 200 250 300
0

2

4

6

o
u
tp

u
t 

a
n
d
 r

e
fe

re
n
c
e

time (s)

0 50 100 150 200 250 300
0

2

4

6

c
o
n
tr

o
l 
s
ig

n
a
l

time (s)
 

Fig. 4. Output for the PID controller tuned by AMIGO. 

 

As a second essay, an experimental plant, called brightness 

process, is used to evaluate the proposed GMV-PID 

controller and it was built at the Department of Automation 

and Systems/Federal University of Santa Catarina. The 

closed-loop control system is composed of a light sensor, a 

signal conditioning circuit for the output measurement, a data 

acquisition board A/D-D/A and a power drive circuit, as 

shown in Figure 5. 

 

  

Fig. 5. Diagram and photo of the brightness process. 

 

The process is characterized by a nonlinear behavior for both, 

the time constant and static gain, and exhibits saturation for 

the control signal, ranging from 0 V to 5 V. These complex 

features motivate the application of the GMV-PID controller 

in a practical scenario. 

 

 

Response to setpoint changes for a step input of magnitude of 

2 V and 3 V are shown in Figure 6. Figure 7 illustrates the 

behavior of the PID gains in the whole simulation for the 

proposed GMV-PID controller. Tuning parameters are set to 

P(0) = 300I5x5, Q(0) = 3I5x5, θ(0) = 0.01, P(z-1) = 1, (0) = 1, 

(0) = 0, max = 10, λ = 3 and Ts = 0.1 s. The controller 

provides good setpoint tracking and the control signal 

exhibits smooth dynamic. The final value of (t) is 0.1195. 

For (27), it is set Ne = 3, with (1) = 0.6, (2) = 0.3, (3) = 

0.1 and etol = 0.035. 
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Fig. 6. Output and control for the GMV-PID controller. 

0 5 10 15 20 25
-0.1

0

0.1

e
s
ti
m

a
ti
v
e
 o

f 
K

c

time (s)

0 5 10 15 20 25
0

0.5

1

e
s
ti
m

a
ti
v
e
 o

f 
K

i

time (s)

0 5 10 15 20 25
0

0.02

0.04

e
s
ti
m

a
ti
v
e
 o

f 
K

d

time (s)
 

Fig. 7. Evolution of the GMV-PID gains. 

 

Figure 8, from the top to the bottom, it is shown the 

simulation results with Cameron-Seborg, Ziegler-Nichols and 

AMIGO tuning rules. Used PID gains are listed in Table 1. 

 

It is possible to observe that the closed-loop system results 

are degrading with oscillatory output and ringing in the 

control that is not good from the viewpoint of the actuator. 

On the other hand, the investigated GMV-PID control 

strategy, excluding the initial operating condition, regulates 

the plant output in a conservative way, as a first-order 

response (slower control variance, faster settling time and 

exhibits no overshoot). 
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Fig. 8. Output and control for classical PID tuning rules. 

 

Table 1. PID gains for the experimental simulation 

Tuning Rule Kc Ki Kd 

Cameron-Seborg 0.0841 0.2123 0.0440 

Ziegler-Nichols 1.1067 1.1067 0.2667 

AMIGO 2.5333 1.3412 0.6104 

 

4. CONCLUSIONS 

 

The PID tuning procedure is, in many situations, nontrivial 

and sometimes difficult to find an adequate set of parameters 

to guarantee a desired closed-loop dynamic. 

 

The idea described in this paper, for the design of the GMV-

PID controller, which is based on a combination of the least 

squares estimation and the parameter optimization method for 

weighting the control signal, is good to improve the behavior 

of the system and to be used in time-varying plants. The 

resulting GMV-PID controller was applied in two simulation 

examples and has shown an improved performance over 

popular PID tuning rules. 

 

Although the gradient method idea, to penalize excessive 

variations of the control signal, which is impractical, has been 

employed as part of the GMV-PID controller, it is possible to 

insert it on a variety of digital controller design types. This 

idea is been investigated as future works for the dynamic 

matrix controller and GMV state-space form. 
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