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Abstract: General closed–form expressions of linear discrete–time system responses of arbitrary
order are presented without proof. The system poles can be real and/or complex, and may be
repeated. While these expressions are readily computed from the system in standard forms, they
are based on a backward difference formulation, shown to offer some important simplifications
and a closer analogy with the continuous case. Expressions are also derived for Lyapunov
(Sylvester) equations, whose solution is the corresponding (cross) Grammian matrix, thus
allowing evaluation of it without direct reference to the poles of the system. Finally, an example
is presented of how these expressions may be utilized to obtain an expression for zero-optimized
open-loop PID coefficients.

1. INTRODUCTION

Closed form transfer functions for discrete time systems
are of considerable interest in the area of control systems
and filter design, see e.g., Gajić [2003], Brogan [1991],
Oppenheim et al. [1997], Feuer et al. [1996] and Goodwin
et al. [2001]. In many cases, it is beneficial to carry out
the entire procedure from system identification through
controller design and implementation in discrete time,
despite the fact that the actual process to be controlled
may by nature be continuous.

In this paper we present without proof due to space limi-
tations general closed–form expressions of linear discrete–
time system responses of arbitrary order. While these
expressions are readily computed from the system in stan-
dard forms, they are based on a backward difference formu-
lation, shown to offer some important simplifications. Our
approach follows closely an approach for obtaining closed–
form expressions for linear continuous–time responses pre-
sented, e.g., in Herjólfsson et al. [2006] and Hauksdóttir
et al. [2007]. By working with backward differences we
obtain a closer analogy than in some earlier work on
discrete time systems. See, e.g., Herjólfsson et al. [2004]
for some earlier work on PID controllers in discrete–time.

The discrete–time responses are presented in Section 2.
The calculation of Grammian matrices is discussed in
Section 3. One application is the computation of PID
controllers by minimizing impulse, step, ramp, etc., open-
loop response deviations from a reference response, effec-
tively presenting design requirements. This is dealt with
in Section 4, including examples.

2. DISCRETE–TIME SYSTEM RESPONSES

Consider the n-th order discrete-time difference equation

n
∑

i=0

a−iy[k− i] =
m
∑

i=0

b−iu[k− i], a0 = 1, k ≥ 0, (2.1)

with the initial conditions y[k] = 0, k = −1,−2, . . . ,−n,
corresponding to the transfer function

Y (z)

U(z)
=
b0 + b−1z

−1 + · · ·+ b−mz
−m

1 + a−1z−1 + · · ·+ a−nz−n

= zn−m
b0z
m + b−1z

m−1 + · · ·+ b−m
zn + a−1zn−1 + · · ·+ a−n

. (2.2)

Expressing this equation in backward difference form we
have

n
∑

i=0

α−i∇
iy[k] =

m
∑

i=0

β−i∇
iy[k], (2.3)

where ∇y[k] = y[k]− y[k − 1],

ATn = [ α0 α−1 · · · α−n ] = [ a0 a−1 · · · a−n ]Pn+1,
(2.4)

BTm = [ β0 β−1 · · · β−m ] = [ b0 b−1 · · · b−m ]Pm+1,
(2.5)

and Pk denotes a k×k Pascal matrix, whose (p+1, q+1)-th
element is (−1)q

(

p
q

)

with
(

p
q

)

= 0 if q > p.

Equivalently we are replacing the transfer function (2.2)
with

β0 + β−1ẑ + · · ·+ β−mẑ
m

1 + α−1ẑ + · · ·+ α−nẑn
, (2.6)

where

ẑ =
z − 1

z
. (2.7)

We are interested in having a closed formula for the
solution to such an equation when u[k] is a forcing function
of a given order, γ, denoted by Iγ [k]. We choose to define
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I0[k] = δ[k] and

Iγ [k] =

(

k + γ − 1

γ − 1

)

H [k], γ ≥ 1, (2.8)

rather than defining it as

kγ−1

(γ − 1)!
H [k], γ ≥ 1, (2.9)

as is more common. Here δ[k] denotes the Dirac delta func-
tion, and H [k] denotes the Heaviside unit step function.
The underlying reason for adopting the choice (2.8), rather
than (2.9), is the result of the following lemma.

Lemma 1.

∇Iγ+1[k] = Iγ [k], (2.10)

Iγ+1[k] =

k
∑

i=0

Iγ [i], γ ≥ 0, k ≥ 0. (2.11)

Proof: We have from (2.8) and Pascal’s identity that when
γ ≥ 1, k ≥ 0

∇Iγ+1[k] =

(

k + γ

γ

)

H [k]−

(

k + γ − 1

γ

)

H [k − 1]

=

(

k + γ − 1

γ − 1

)

H [k] = Iγ [k]. (2.12)

It follows from this result that

Iγ+1[k] = Iγ+1(0) +

k
∑

i=1

∇Iγ+1[i]

= 1 +

k
∑

i=1

Iγ [i] =

k
∑

i=0

Iγ [i]. (2.13)

�

Furthermore we have the following result:
Theorem 1: Let y[k] denote the solution to (2.1) when
u[k] = pm[k]H [k] and pm[k] is a general polynomial of
degree m in k.

Let yγ [k] denote the solution to (2.1) when u[k] = Iγ [k],
γ ≥ 1. Then

y[k] =

m
∑

γ=0

(∇γpm[−1]) yγ+1[k]. (2.14)

Proof: By Newton’s backward difference interpolation for-
mula, pm[k] is exactly expressed by

pm[k] =
m
∑

γ=0

(∇γpm[−1])

(

k + γ

γ

)

, (2.15)

choosing the interpolation points as k = −1,−2, . . . ,−m−
1. This follows from the fact that there is a unique
polynomial of degreem that satisfies suchm+1 conditions.
The result follows directly from (2.8) and (2.15). �

We can, in particular, make use of (2.14), if we wish to
obtain a solution when the forcing function, u[k], is of

form (2.9). Denoting the solution when u[k] = kγ−1

(γ−1)!H [k]

by ŷγ [k] we thus get

ŷ2[k] =−y1[k] + y2[k],

ŷ3[k] =
1

2
y1[k]−

3

2
y2[k] + y3[k],

ŷ4[k] =−
1

6
y1[k] +

7

6
y2[k]− 2y3[k] + y4[k], etc.(2.16)

Before stating the main result of this section, we introduce
some notation. Let λ1, λ2, . . . , λν denote the poles of the
transfer function

1

a(z)
=

1

zn + a−1zn−1 + · · ·+ a−n
, (2.17)

repeated d1, d2, . . . , dν times, respectively and κij denote
the basic partial fraction coefficients given by the standard
formula

κij =
1

(di − j)!

d(di−j)

dz(di−j)

[

(z − λi)
di

a(z)

]∣

∣

∣

∣

z=λi

,
j = 1, 2, . . . , di
i = 1, 2, . . . , ν.

(2.18)
Thus,

1

a(z)
=

1

(z − λ1)d1 (z − λ2)d2 · · · (z − λν)dν

=
ν
∑

i=1

di
∑

j=1

κij
(z − λi)j

.
(2.19)

Next we introduce the n× n Jordan matrix

J =









J1 0 · · · 0
0 J2 · · · 0
...

. . .
. . .

...
0 · · · 0 Jν









(2.20)

with the diagonal blocks

Ji =











λi 1 0
. . .

. . .

. . . 1
0 λi











(2.21)

each a di × di matrix, as well as the matrix

J̃ = I − J−1 = J−1(J − I), (2.22)

where I denotes the n× n unit matrix and assuming, for
the time being, that λi 6= 0, i = 1, 2, . . . , ν. Then introduce
the n-vector

κ = [ κ11 · · · κ1d1
· · · κν1 . . . κνdν ]

T
(2.23)

and the n× (m+ 1) matrices

Kγ,m =
[

J̃−γκ J̃1−γκ · · · J̃m−γκ
]

(2.24)

and
Kγ,m,n = Jn−1Kγ,m, (2.25)

where we note that the latter matrix is well defined for
n+ γ ≥ m+ 1, even if λi = 0 for some i = 1, 2, . . . , ν.

For a given vector cγ = [cγ , cγ−1, . . . , c1]T , denote by Dcγ

the following γ × γ upper triangular Hankel matrix

Dcγ
=









cγ cγ−1 · · · · · · c1
cγ−1 cγ−2 · · · c1 0

...
... · · · · · · . . .

c1 0 · · · · · · 0









. (2.26)

Finally, introduce the n-vector function

E [k] =
[

E1[k]T , E2[k]T , . . . , Eν [k]
T
]T
, (2.27)
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where

Ei[k] =



















λki
d

dλ
λk
∣

∣

∣

∣

λ=λi
...

1

(di − 1)!

d(di−1)

dλdi−1
λk
∣

∣

∣

∣

λ=λi



















=



















λki
(

k

1

)

λk−1
i

...
(

k

di − 1

)

λk−di+1
i



















(2.28)
and the γ-vector function

ργ [k] =

[

1 (k + 1)

(

k + 2

2

)

· · ·

(

k + γ − 1

γ − 1

)]T

.

(2.29)
We can now state without proof:

Theorem 2. Denote by yγ [k] the solution to the difference
equation (2.1) with u[k] = Iγ [k], γ = 0, 1, . . .. Then

yγ [k] = (Kγ,m,nBm)T E [k] −
(

Dcγ
Bγ−1

)T
ργ [k] (2.30)

with Kγ,m,n, Bm and Dcγ
, defined as in (2.25), (2.5) and

(2.26), respectively, setting β−i = 0 if i > m, and where
the coefficients cj , j = 1, 2, . . . , γ, in (2.26) are the solution
of the following system








α0 0 · · · · · · 0
α−1 α0 0 · · · 0

...
...

. . .
...

α−γ+1 α−γ+2 · · · · · · α0

















c1
c2
...
cγ









= −









1
0
...
0









, (2.31)

assuming that the system (2.1) has no poles equal to one.

Remark 1. Given the ν poles of (2.17), the n-vector
Kγ,m,nBm in (2.30) can be calculated by O(n2) opera-
tions. Firstly the partial fraction coefficients (2.18) can
be calculated by O(n2) operations. Secondly, the matrix
Kγ,m in (2.24) can be calculated by O(mn) operations
from the vector κ in (2.23) by recursively forming matrix-
vector products of the form u = J̃v, by solving the system
Ju = (J − I)v, and/or solving linear systems of the
form J̃u = v, by solving the system (J − I)u = Jv,
each requiring O(n) operations. Finally, the matrix-vector
product Jn−1(Kγ,mBm) requires O(n2) operations. The
modifications required in the case of zero poles, do not
increase this total complexity. The calculation of the γ-
vector Dcγ

Bγ−1 in (2.30) requires further O(nγ) opera-
tions (if γ ≤ n). When the system is stable the calculations
of αi, i = 0, 1, . . . , γ − 1 from the a-coefficients by (2.4)
requires O(nγ) operations, the solution of cγ from (2.31)
further O(γ2) operations.

3. CALCULATION OF GRAMMIAN MATRICES

In this section we consider the calculations of Grammian
matrices associated with stable equations of form

n
∑

i=0

a−iy[k − i] = Iγ [k], k ≥ 0, γ = 0, 1, 2, . . . (3.1)

with y[k] = 0, k = −1,−2, . . . ,−n and Iγ [k] being defined
as in (2.8), referred to as the basic response of order γ. Let

y
(−γ)
b [k] denote the transient part of this basic response.

Then, it follows from (2.30) that

y
(−γ)
b [k] =

(

Jn+γ−1 (J − I)
−γ
κ
)T

E [k], k ≥ 0, (3.2)

for γ = 0, 1, 2, . . . . Now let y
(γ)
b denote the backward

difference of order γ of the basic response of order zero,
yb[k], i.e.

y
(γ)
b [k] = ∇γyb[k] =

(

Jn−γ−1 (J − I)
γ
κ
)T
E [k], k ≥ 0,

(3.3)
for γ = 1, 2, . . . , noting that ∇E [k] = J−1(J − I)E [k].

Remark 2: This symmetry between higher order differences
and higher order transient basic responses, analogous
to such a symmetry in the continuous case, with the
backward differences being replaced by derivatives, is
indeed the main motivation for working with backward
differences.

Next let Ŷγ,m denote the m-vector function, m ≥ 0,

Ŷγ,m[k] =
[

y
(−γ)
b [k] y

(−γ)
b [k − 1] · · · y

(−γ)
b [k −m+ 1]

]

,

(3.4)
and let Yγ,m denote the m-vector function

Yγ,m[k] =
[

y
(−γ)
b [k] y

(−γ+1)
b [k] · · · y

(−γ+m−1)
b [k]

]

(3.5)

related to Ŷγ,m by the Pascal matrix

Yγ,m[k] = PmŶγ,m[k]. (3.6)

Then let Ĝγ,m1,m2
denote the m1 × m2 cross-Grammian

matrix associated with the solution of two separate equa-
tions of form (3.1), identified by the subscripts 1 and 2,
such that the (i, j)-th element of Gγ,m1,m2

is given by
∞
∑

k=0

y
(−γ)
1,b [k − i]y

(−γ)
2,b [k − j], i = 0, 1, 2, . . . ,m1 − 1,

j = 0, 1, 2, . . . ,m2 − 1.
(3.7)

Similarly, let Gj,m1,m2
denote the corresponding cross-

Grammian matrix based on backward differences whose
(i, j)-th element is

∞
∑

k=0

y
(−γ+i)
1,b [k]y

(−γ+j)
2,b [k], i = 0, 1, . . . ,m1 − 1,

j = 0, 1, . . . ,m2 − 1.

(3.8)

These Grammians depend on the coefficients
a1,0, a1,1, . . . , a1,n1−1, a2,0, a2,1, . . . , a2,n2−1, although we
do not denote that explicitly. Equivalently, we have

Ĝγ,m1,m2
=

∞
∑

k=0

Ŷ1,γ,m1
[k]Ŷ2,γ,m2

[k]T (3.9)

Gγ,m1,m2
=

∞
∑

k=0

Y1,γ,m1
[k]Y2,γ,m2

[k]T (3.10)

and then from (3.6)

Gγ,m1,m2
= Pm1

Ĝγ,m1,m2
PTm2
. (3.11)

These cross-Grammians can be calculated as solutions to
Sylvester-systems of size n1 × n2, provided m1 ≤ n1 and
m2 ≤ n2, where n1 and n2 denotes the order of (3.1) in
each case. This is shown by the next theorem and corollary,
but note that even if m1 < n1 and/or m2 < n2, we must
solve a system of size n1 × n2 and then obtain the desired
Grammian matrix as the m1 ×m2 principal submatrix of
the solution. Also note, that if m1 ≥ n1 or m2 ≥ n2, we
have the option of increasing n1 and/or n2 by adding extra
zero poles.
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Theorem 3. The cross-Grammian matrix Ĝγ,n1,n2
(3.10)

is the solution of the following discrete Sylvester equation

C1XC
T
2 −X+Pn1

u1,γu
T
2,γP

T
n2

= 0, γ = 0, 1, 2, . . . , (3.12)

where C denotes the n× n companion matrix












−a−1 −a−2 · · · −a−n+1 −a−n
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0













, (3.13)

Pn denotes the Pascal matrix and uγ is an n-vector whose

i-th element is 1 +
∑γ+1−i
j=1 cj where ci, i = 1, 2, . . . , γ are

determined by (2.31).

Proof: y
(−γ)
b [k], the transient part of the basic response

of order γ, satisfies the homogeneous difference equation
(3.1) setting Iγ [k] ≡ 0, and it can be deduced from (2.30),
setting m = 0 and b0 = 1, and (2.26), that it further
satisfies the initial conditions

∇iy[0] =











1 +

γ−i
∑

j=1

cj , i = 0, 1, . . . , γ − 1

1, i = γ, γ + 1, . . . , n− 1.

(3.14)

This follows from the fact that ∇iyγ [0] = 1, i =
0, 1, . . . , n − 1 by the definition of the basic response of
order γ, and

∇iργ [k] =

{

[

0 · · · 0 ργ−i[k]
]T

if γ > i
[

0 · · · 0
]T

if γ ≤ i.
(3.15)

Equivalently y(−γ)[k] satisfies the same homogeneous dif-
ference equation and the initial conditions









y[0]
y[−1]

...
y[−n+ 1]









= Pn









y[0]
∇y[0]

...
∇n−1y[0]









= Pnuγ .

Thus, yet another equivalent formulation is that y(−γ)[k]
satisfies the first order system

Y [k] = CY [k − 1] Y [0] = Pnuγ , (3.16)

where Y [k] = [y[k] y[k − 1] · · · y[k − n+ 1]]
T

and C is
the companion matrix (3.13). The results now follows from
a straight forward well known argument. �

Corollary 1: The cross-Gramian matrix Gγ,n1,n2
is the

solution of the following Sylvester equation

C̃1XC̃
T
2 −X + u1,γu

T
2,γ = 0, γ = 0, 1, 2, . . . (3.17)

where C̃1 = Pn1
C1Pn1

, C̃2 = Pn2
C2Pn2

.
Proof: The result follows from (3.11) and (3.12) and the
fact that P−1

n = Pn. �

Remark 3. The cross-Grammian matrix Gγ,m1,m2
(3.9) is

also given by the following expression

Gγ,m1,m2
= KT1,γ,m1−1,n1−1Wn1,n2

K2,γ,m2−1,n2−1, (3.18)

where Kγ,m,n is the n× (m+ 1) matrix (2.25) and Wn1,n2

is an n1 × n2 matrix whose (i, j)-th element with

i =

t−1
∑

k=1

d1,k + r and j =

u−1
∑

k=1

d2,k + s (3.19)

is given by

∑min(r,s)
p=1

(

r−1
p−1

)

λr−p1,t

(

s−1
p−1

)

λ̄s−p2,u

(1− λ1,tλ̄2,u)r+s−1
, (3.20)

r = 1, . . . , d1,t, t = 1, . . . , ν1, s = 1, . . . , d2,u, u = 1, . . . , ν2,
the poles and their multiplicities associated with the two
equations being denoted as in (2.19).

We have directly from Theorem 3 that

Wn1,n2
=

∞
∑

k=0

E1[k]E2[k]H (3.21)

and the result now follows from the fact that by (2.27) and
(2.28), the (i, j)-th element of Wn1,n1

with i and j given
by (3.19) is

∞
∑

k=0

(

k

r − 1

)

λk−r+1
1,t

(

k

s− 1

)

λk−s+1
2,s . (3.22)

4. AN APPLICATION TO PID ZEROS

As an example of how the expressions above may be
utilized, we derive an expression for zero–optimized open–
loop PID coefficients, with respect to a response of arbi-
trary order. Here we follow an approach, presented, e.g.,
in Herjólfsson et al. [2006] and Hauksdóttir et al. [2007]
for continuous systems. While open loop zero-optimization
may lead to instability in the closed loop, it remains a use-
ful tool for providing initial values for the PID coefficients
in a two stage optimization approach, cf. Herjólfsson et al.
[2012].

When applying PID control in open loop we are replacing
(2.3) with the equation

n
∑

i=0

α−i∇
iy[k] =

(

kI + kP∇+ kD∇
2
)

m
∑

i=0

β−i∇
iu[k],

(4.1)
kI , kP and kD being the discrete PID coefficients. Intro-
ducing the (m+ 3)× 3 matrix

B =





















β0 0 0
β−1 β0 0
β−2 β−1 β0

...
...

...
β−m β−m+1 β−m+2

0 β−m β−m+1

0 0 β−m





















, (4.2)

and the γ× 3 matrix Bγ corresponding to the first γ rows
of B, B being padded by zero-rows if γ > m+ 3, and the

3-vector p = [kI kP kD]
T

, it follows directly from (2.30)
that the solution to (4.1) can be expressed in terms of the
PID-coefficients as follows

yγ [k] = (Kγ,m+2,nBp)
T E [k]− (Dcγ

Bγp)
Tργ [k]

= (Bp)TYγ,m+3[k]− (Dcγ
Bγp)

Tργ [k], (4.3)

with Yγ,m[k] being defined by (3.5).

We wish to track a system with a given transfer function

βr,0 + βr,−1ẑ + · · ·+ βr,−mr ẑ
mr

αr,0 + αr,−1ẑ + · · ·+ αr,−nr ẑ
nr
, (4.4)

to which we apply the same forcing function Iγ [k]. Denot-
ing it by yr,γ [k], we now wish to choose the PID-coefficients
in such a way that
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∞
∑

k=0

(yγ [k]− yr,γ [k])
2 (4.5)

is minimized. Since the infinite sums of the non-transient
parts of yγ [k] and yr,γ [k] are unbounded as k → ∞, if
γ ≥ 1, whereas the infinite sums of the transient parts
are bounded, assuming that both systems are stable, this
implies that the PID-coefficients have to be chosen so that

∞
∑

k=0

((Bp)TYγ,m+3[k]− BTr Yr,γ,0[k])2 (4.6)

is minimized subject to the constraint that

(Dcγ
Bγp)

Tργ [k] ≡ (Dcr,γ
Br,mr,γ)

Tρr,γ [k], (4.7)

if γ ≥ 1. The additional suffix, r, denotes that the
corresponding expression is for the reference system. The
vector Br,mr,γ consists of the first γ elements of the vector
Br,mr . Equivalently the PID-coefficients can be chosen so
that

pTBTGγBp− 2pTBTHγBr (4.8)

is minimized, subject to the same constraint, where Gγ is
the (m+ 3)× (m+ 3) Grammian matrix

∞
∑

k=0

Yγ,m+3[k]Yγ,m+3[k]T , (4.9)

which can be determined from Theorem 3 as the (m +
3) × (m + 3) principal minor of the n × n solution of the
given Lyapunov equation where we have increased n, if
necessary, such that n ≥ m+ 3, by adding m+ 3− n zero
poles. Hγ is the (m+3)×(mr+1) cross Grammian matrix

∞
∑

k=0

Yγ,m+3[k]Yr,γ,mr+1[k]T , (4.10)

which can again be determined from Theorem 3 as the
(m+3)×(mr+1) principal minor of the n×nr solution of
the given Sylvester equation, increasing n and nr as before,
if necessary. Thus the PID-coefficients will be determined
directly by the following set of equation

[

Aγ U
T
γ

Uγ 0

]

[

p
1

2
Λ

]

=

[

Vγ
Wγ

]

, (4.11)

where Λ is a γ × 1 vector of Lagrange multipliers,
Aγ = BTGγB, a 3× 3 matrix,
Uγ = Dcγ

Bγ , a γ × 3 matrix,

Vγ = BTHγBr,mr , a 3× 1 vector and
Wγ = Dr,cr,γBr,mr,γ , a γ × 1 vector.

Example 1: Impulse response minimization - γ = 0.

Consider the third order system having poles at 0.5, 0.6
and 0.8 and a unity gain given by

Y (z)

U(z)
= z2

0.04

z3 − 1.9z2 + 1.18z − 0.24
, (4.12)

where n = 3 and m = 1. We then have

A3 =







α0

α−1

α−2

α−3






=







1 1 1 1
0 −1 −2 −3
0 0 1 3
0 0 0 −1













1
−1.9
1.18
−0.24






=







0.04
0.26
0.46
0.24







(4.13)
and

B1 =

[

β0

β−1

]

=

[

1 1
0 −1

] [

0
0.04

]

=

[

0.04
−0.04

]

. (4.14)

The reference system is given by

Yr(z)

U(z)
=

0.3

z − 0.7
, (4.15)

where nr = 1 and mr = 1. Then

Ar,1 =

[

αr,0
αr,−1

]

=

[

1 1
0 −1

] [

1
−0.7

]

=

[

0.3
0.7

]

(4.16)

and

Br,1 =

[

βr,0
βr,−1

]

=

[

1 1
0 −1

] [

0
0.3

]

=

[

0.3
−0.3

]

. (4.17)

We now compute the solution to the discrete Sylvester
equation

C̃G0C̃
T −G0 + u0u

T
0 = 0, (4.18)

where

C̃ = P4







1.9 −1.18 0.24 0
1 0 0 0
0 1 0 0
0 0 1 0






P4 (4.19)

where we have added a zero in the top row since n < m+3.
We further have

u0 = [ 1 1 1 1 ]
T

(4.20)

and using Matlab’s dlyap to solve the discrete Sylvester
equation we obtain

G0 =







44.1553 1.3143 −1.9502 −0.8784
1.3143 2.6285 0.6783 −0.2001
−1.9502 0.6783 1.3567 1.1566
−0.8784 −0.2001 1.1566 2.3131






. (4.21)

Then

B =







0.04 0 0
−0.04 0.04 0

0 −0.04 0.04
0 0 −0.04






(4.22)

and

A0 =

[

0.0706 0.0021 −0.0031
0.0021 0.0042 0.0011
−0.0031 0.0011 0.0022

]

. (4.23)

Next, we compute the solution to the discrete Sylvester
equation

C̃H0C̃r −H0 + u0u
T
r,0 = 0, (4.24)

which results in

H0 =







3.8734 1.0000
1.4620 1.0000
0.7386 1.0000
0.5216 1.0000






. (4.25)

Then, we have

V0 = BTH0Br,1 = [ 0.0289 0.0087 0.0026 ]
T

(4.26)

and

p = [ kI kP kD ]
T

= A0\V0 = [ 0.4048 1.6096 0.9769 ]
T
.

(4.27)
The resulting step responses and pole (x) zero (o) diagram
for the open loop is shown in Figure 1. The resulting step
responses and root locus for the closed loop is shown in
Figure 2. All closed loop poles are labeled by an ∗ on the
corresponding root locus.

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 ThPS.9



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Step Response

Time (sec)

A
m

pl
itu

de

open loop reference system w/o int
PID and system w/o int

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Pole−Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

Fig. 1. Example 1. A third order system with impulse
optimized PID zeros running in open loop.
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Fig. 2. Example 1. A third order system with impulse
optimized PID zeros running in closed loop.
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Fig. 3. Example 2. A third order system with step opti-
mized PID zeros running in open loop.

Example 2: Step response minimization - γ = 1.

In the case of step response minimization, we have

u1 = [ 1 + c1 1 1 1 ]
T

[−24 1 1 1 ]
T

(4.28)

and

ur,1 = [ 1 + cr,1 1 ]
T

= [−2.3333 1 ]
T
. (4.29)

Then,

Dcγ
= [c1] = −25, where α0c1 = −1 (4.30)

and

Dcγ,γr
= [cr,1] = −3.3333, where αr,0cr,1 = −1. (4.31)

We now have

U1 = Dc1
B1 = [−1 0 0 ] (4.32)

and

W1 = Dr,cr,γrβr,mr,1 = cr,1βr,0 = −1. (4.33)

This results in

p = [ kI kP kD ]
T

= [ 1.0000 4.4761 4.0838 ]
T
, (4.34)

the open loop results are shown in Figure 3 and the
corresponding closed loop results are shown in Figure 4.

Comparing the pole-zero maps in Figures 1 and 3, one
of the PID zeros (labeled o) is located to the left of the
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Fig. 4. Example 2. A third order system with step opti-
mized PID zeros running in closed loop.

open loop poles (labeled x) in the impulse optimization,
while in the step optimization the corresponding zero is
located between the faster two system poles. While the
interpretation of this is not obvious, it is clear that the
DC gain is taken care of only in the step optimization
case, due to the Lagrange constraint.

Comparing the root-loci in Figures 2 and 4, one can note
that while the root-locus of the PID controlled system
(in blue) is closer to that of reference system (in red) for
the impulse optimization, the complex poles of the PID
controlled system (labeled ∗) are closer to those of the
reference system for the step optimization, resulting in a
more similar overshoot and settling time in that case.
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