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Abstract: This paper presents an entirely new tuning method of PI controller with a desired damping 
coefficient. We consider a plant model described by a first-order lag plus deadtime system in the process 
control. The ultimate sensitivity method presented by Ziegler and Nichols has been still widely used, but it 
has a disadvantage that gives an oscillatory response. In recent years a less oscillatory response has been 
judged to be more appropriate for process controls. In tuning PI controller it is often convenient to 
determine the damping coefficient to obtain the desired control performance. The deadtime element can be 
approximated by the Padé equation to determine the damping coefficient for the equivalent second-order 
lag system. In this paper the integral time is normally chosen equal to the time constant of a plant to 
degenerate the order of the closed-loop transfer function so that pole-zero is cancelled. As a result, the 
relations among the gain constant, the time constant, the deadtime of the plant and the proportional gain of 
the controller are clarified when the desired damping coefficient is provided. 
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

1. INTRODUCTION 

In most process controls, tuning PID controllers can be 
achieved on the assumption that a plant model is 
approximated by a first-order lag plus deadtime system. The 
ultimate sensitivity method developed experimentally by 
Ziegler and Nichols in 1942 has been by far the most 
common controller tuning method. However, since the decay 
ratio, which is called quarter damping ratio (i.e. the damping 
coefficient ζ = 0.22), has been chosen traditionally, this leads 
to poor attenuation, so that the closed-loop response can be 
rapidly oscillatory due to huntings. 

In typical specifications on a control system it is desirable to 
have a critically damped response with no overshoot. To do 
this, we need a simple, easy-to-use, intuitive tuning method 
that gives moderate damping effect. In this study a pair of 
conjugate complex poles to form an oscillatory mode for the 
closed-loop transfer function are primary concern for PI 
control used when the deadtime element of the plant can be 
approximated by the Padé equation. The PI controller tuning 
method with a desired damping coefficient for the closed-
loop system is developed. 

2. CONTROLLED PLANT AND OVERALL CONTROL 
SYSTEM 

Consider a first-order lag plus deadtime system with the 
transfer function: 

Fig. 1 PI control system
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GP (s)  K

Ts1
eLs,                             (1) 

where K is the gain constant, T is the time constant and L is the 
deadtime of the controlled plant. Since the pure deadtime 
element cannot be described by a finite-order model, it can be 
practically approximated by the second-order Padé equation as: 

GP (s)  K

Ts1
 L2s2  6Ls12

L2s2  6Ls12
 .                  (1)’ 

Consider the simple feedback loop, shown in Fig. 1, and 
composed of a plant and a PID controller. In Fig. 1, r is the 
setpoint, e is the control error, u is the control input, and x is 
the control output, kp is the proportional gain and Ti is the 
integral time. For such a control system the transfer function 
from the setpoint r to the control output x is given by 
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3. CHARACTERISTICS OF POLES FOR PI CONTROL 
SYSTEM 

Expanding Eq. (2), Gcl(s) can be expressed as a ratio of 
polynomials, and the orders of the numerator polynomial and 
the denominator one are 3 and 4, respectively. In pole 
assignment design it is attempted to assign a pair of conjugate 
complex poles of the closed-loop system equal to the 
dominant poles, and the PI parameters should be chosen so 
that the damping coefficient of the dominant poles leads to 
better response. In this current analysis it is desirable that the 
order of the denominator polynomial should be 3 to obtain 
satisfactory control performance. 

3.1  Close-loop transfer function with integral time fixed 

Considering the closed-loop transfer function given by Eq. 
(2) and letting the integral time Ti be the time constant T, the 
order of the denominator polynomial can be easily reduced 
through the pole-zero cancellation. As a result the closed-
loop transfer function Gcl΄(s) is given by 

                  Gcl
(s) 

kpK

Ts
 L2s2  6Ls12
L2s2  6Ls12

1
kpK

Ts
 L2s2  6Ls12
L2s2  6Ls12

 

Gcl
(s) 

kpK A (Ls)2  6(Ls)12 
(Ls)3  6 kpK A (Ls)2

 12  6kpK A (Ls)12 kpK A

          (3) 

where A = T/L and Ti = T. 

In this case we find that the closed-loop zeros of Eq. (3) are 
practically kept constant, and cannot be adjustable by the 
controller. On the contrary, it is useful that the closed-loop 
poles should be assigned in accordance with the required 
design criteria. Eq. (3) indicates major great advantage on the 
PI controller that the proportional gain kp becomes the only 
one adjustable parameter because the integral time Ti is kept 
fixed. Therefore, the pole-assignment for the PI controller 
gives the simple problem solving the four parameters, namely 
kp, K, T, and L. 

3.2  Relations of poles to damping coefficient 

To get some insight into the relations between poles and 
damping coefficient, let us investigate the following 
simplified characteristic equation given in the denominator 
polynomial of Eq. (3): 

L3s3  aL2s2  bLs c  0                       (4) 

where a =6 kpK/A, b =12  6 kpK/A, and c =12 kpK/A. 

The closed-loop poles are the roots of Eq. (4) and the pole-
zero configuration may be varied significantly. Many simple 
feedback loops, however, will be given by a real pole s1 and 
complex pair of poles s2 and s3 in case that P2 ≥ 0 (discussed 
later), which can be computed by 
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(a) 0º ≤ φ < 90º            (b) 90º < φ ≤ 180º 

Fig. 2  Angle φ between a line connecting real pole and 
oscillatory poles, and real axis 
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  (5) 

In this process the following interim parameters have been 
introduced: 

M  3b a2

9
, N  2a3  9ab 27c

54
, P  M 3  N 2

Q  3
P  N , R 

3
 P N .

 

According to Eq. (5) both real and oscillatory roots can be 
given by the function of 1/L. Writing the real and imaginary 
parts of oscillatory roots as α and β we get the damping 
coefficient ζ through straightforward calculations as 
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Notice that ζ can be determined by a, b, and c only, 
regardless of L. Since Q and R are the functions of a, b, and c, 
all of these parameters are the functions of kpK/A, so that ζ 
can be easily obtained as the function of kpK/A. 

3.3  Effects of the real pole on the oscillatory poles 

The damping coefficient can be determined by a set of the 
real pole and the oscillatory poles. Thus, if the damping 
coefficient of the closed-loop response is assumed to be equal 
to that of oscillatory poles, the real pole may be neglected by 
assigning far from the oscillatory poles of concern. 

To examine the effects of the real pole on the oscillatory 
poles, we define the angle φ between the real axis and the 
connecting line of real pole and the oscillatory poles, as 
shown in Fig. 2. 

From Eq. (5), the angle φ is given by,  
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where φ normally varies within the range from 0º to 90º (0º ≤ 
φ < 90º). In case that φ is gets over the range (90º < φ ≤ 180º), 
φ is given by, 

  180 .                                 (8) 

According to Eq. (7), (8) φ is the function of kpK/A as well as 
ζ. In the previous paper 3), if φ is less than 50º (φ ≤ 50º) on 
third-order system consisted of real pole and oscillatory poles, 
it has been clarified that the effects of real pole can be 
neglected. Thus, when specifying ζ of oscillatory poles, it is 
necessary to examine if the condition for φ of less than 50º is 
satisfied. As a result, the value of φ affects the response (over 
damped or oscillation) of the control system. 

4. PI PARAMETERS FOR DESIRED DAMPING 
COEFFICIENT 

4.1  kp for desired coefficient ζ 

To derive kp for the desired damping coefficient ζ, Eq. (6) can 
be varied with kpK/A. The relation between ζ and kpK/A is 
shown as in Fig. 3. It can be seen that there exist three regions 
as kpK/A increases. The first region means the region where the 
oscillatory poles join the real axis at the junction point as kpK/A 
increases. The Second region means the region where all three 
poles become real. The third region means the region where 
the oscillatory poles moves from the separation point to the 
stability limit at the imaginary axis. The behaviors for these 
three regions are depicted as shown in Fig. 4. 

 

 

 

Next let us consider how Eq. (7) and (8) are varied with kpK/A. 
The relation of φ to kpK/A can be obtained as shown in Fig. 5. 
When looking at Fig. 5 corresponding to Fig. 3, φ is less than 
50º in the third region and the damping coefficient ζ of 
oscillatory poles can be desired as the damping coefficient ζ of 
a step response in this region. Therefore, kp for the desired 
damping coefficient ζ can be calculated by using the region 3  
(0.368 ≤ kpK/A < 1.58). In region 3  in Fig. 3, kpK/A can be de- 
termined uniquely when ζ is desired. Thus, Eq. (9) can be 
obtained by replacing kpK/A by  

)(/ AKk p                                    (9) 

where  is the function of ζ.  for desired ζ is shown in Table 1. 
From Eq. (10), kp for the desired damping coefficient ζ can be 
given by 

KAk p /)(                              (10) 

From Eq. (10) and the results shown in Table 1, kp for the 
desired damping coefficient ζ can be found to be a completely 
linear function of A/K, as shown in Fig. 6. 
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4.2  Validation for the pure deadtime system 

In section 4.1, we proposed the PI tuning method based on the 
damping coefficient ζ of oscillatory poles. So that it is response 
of ζ = 0.5 is required for this plant, the proportional gain kp = 
6.61 can be obtained from Fig. 6. Then the integral time Ti = 
10 can be found as Ti = T. The step responses for the desired ζ 
= 0.5 and 1.0 are shown in Fig. 7(a), (c) respectively. Because 
the damping coefficient of step responses for the desired ζ = 
1.0 cannot be obtained from the amplitude ratio, the damping 
coefficient is assumed to be ζ = 0.5. 

An enlarged figure of the step responses desired as ζ = 0.5 is 
shown in Fig. 7(b). In this figure, the dashed line is the step 
responses for first order lag plus deadtime system approxi- 
mated by the second-order Padé equation. In the calculation of 
the damping coefficient of the step responses from amplitude 
ratio, it is found that the step response corresponds approxi- 
mately to the damping coefficient desired by oscillatory poles.  

In this figure, the solid lines show the step responses for first-
order lag plus deadtime system with pure deadtime, and it can 
be found that the step response (solid line) almost corresponds 
to the step response (dashed line). Thus, it can be concluded 
that this parameter method is also effective for pure deadtime. 

As additional consideration, the plant which the deadtime is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

larger than the time constant, K = 1, A = 0.1 (T << L) is 
considered. For this plant, the step responses for the desired ζ = 
0.5 and 1.0 are shown in Fig. 8(a), (c) respectively, and 
enlarged figure of Fig. 8 (a) is shown in Fig. 8(b). In case that 
T << L, the step response for the desired damping coefficient 
can be obtained successfully as well as T >> L. 

4.3  Comparison with PMM (Partial Model Matching) 

Table 2 shows PI parameters obtained by the proposed method 
and PMM (Partial Model Matching method, proposed by 
Kitamori, 1985) for ζ =1.0. 

As you can see Table 2, both PI parameters are about the same. 
This result is significantly interesting. 

Since the zero of the controller compensates the pole of the 
plant in the proposed method, it can be considered that the 
pole-zero cancellation also occurs in the PMM. In the future, 
we will discuss about the other damping coefficients. 

Fig. 9 shows pole-zero maps for the closed-loop system (the 
characteristics of the plant is A = 1.) using PI controller. In Fig. 
9(a), the PI parameters are decided by using the proposed 
method, and the PI parameters are determined by using the 
PMM in Fig. 9(b). Fig. 10 shows the results of the step 
response for both control systems. 
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Table 2: Comparison of PI parameters
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It can be seen from Fig. 9 that the control system with the 
PMM cannot achieve pole-zero cancellation for the plant (A = 
1) that the deadtime L is the same as the time constant T. 
However, in this situation, the non-oscillation response can be 
obtained. And, both responses are the almost same by 
comparing the response using the proposed method with that 
using the PMM. 

In addition, Fig. 11 shows pole-zero maps for the closed-loop 
system (the characteristics of the plant is A = 10.) using PI 
controller. In Fig. 11(a), the PI parameters are decided by using 
the proposed method, and the PI parameters are determined by 
using the PMM in Fig. 11(b). Fig. 12 shows the results of the 
step response for both control systems. In this case, the both 
characteristics (the pole-zero map and the step response) are 
the about perfectly same. Moreover, although the both 
response between Fig. 10 and Fig. 12 are the same, the speed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
of the response depends on the value of the deadtime L. 

5.  CONCLUSIONS 

We proposed PI controller tuning method for first-order lag 
plus deadtime system. On the assumption that the integral 
time Ti is chosen equal to the time constant T of a plant to 
degenerate the order of the closed-loop transfer function, we 
obtained the following conclusions. 

1) The step response desired by ζ of oscillatory poles can be 
approximated the equivalent response of second-order 
system since real pole can be almost neglected. 

2) A proportional gain kp for the desired damping coefficient 
is an exactly linear function of A/K (A = T/L). 

3) We demonstrated an applicability of the tuning method of 
PI controller for the given damping coefficient. 
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