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Abstract: This paper presents a method for tuning simple controllers for distributed parameter
systems in the process industry. These systems are usually described by partial differential
equations (PDE), which are then simplified into lumped parameter systems represented by
ordinary differential equations (ODE), providing low order transfer functions used for PID
control design. The drawback of this approach is that the control system only performs well at
low bandwidths and without disturbances, as relevant system dynamics, such as resonances lying
at medium-high frequencies, are not taken into account, limiting the performance of the closed-
loop system. This work proposes a method for SISO systems which uses a transfer function
that models the resonances (obtained directly from the PDE) to tune a PID controller that
incorporates a filter that is designed to fulfill control requirements.
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1. INTRODUCTION

Distributed parameter systems (DPS) are well-known in
process industry (e.g. heat exchangers, tubular and packed
bed reactors, solar collector systems) and are usually
modelled with partial differential equations (PDE) and
have been studied since the middle of the last century
(Bellman and Cooke (1963); Cohen and Johnston (1956))
until today (Curtain and Morris (2009)).

The most usual ways to deal with these systems and the
associate drawbacks are: i) To simplify them to lumped-
parameter systems described by ordinary differential equa-
tions (ODE). By this way, it is possible to obtain either a
first or a second order transfer function to easily tune PID
controllers (Camacho et al. (1997)), but in turn, this causes
that relevant system dynamics are not taken into account
when tuning the PID controller; ii) To find a high order
transfer function which is subsequently used in a more
complex (high order) control system, e.g. model predictive
control (Camacho et al. (1997); Johansen et al. (2000)).
Coeflicients of this transfer function can be estimated
using PRBS or multisine input signals in combination with
a linear identification algorithm, but the physical meaning
of the parameters is lost.

In this work an irrational transfer function is directly
calculated from the PDE and split into two parts.
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21589-C05-04 and DPI2011-27818-C02-01 (financed by the Span-
ish Ministry of Science and Innovation and ERDF funds) and
PHB2009-0008 (financed by the Spanish Ministry of Education;
CNPg-BRASIL; CAPES-DGU 220/2010).

One of them is a low order transfer function, from which
it is easy to tune a PID controller (as mentioned before).
The other one is an irrational term modelling resonance
dynamics in the system response, previously used within
an infinite order controller, e.g. repetitive control (Alvarez
et al. (2007, 2009)) or a Smith’s Predictor like control
scheme (Meaburn and Hughes (1996); Ramanathan et al.
(1989)). However, not all the resonance modes have the
same influence in the closed-loop performance, as in real
systems, the amplitude of these resonance modes declines
with the frequency and the control requirements set a
frequency limit from which the dynamics introduced by
the resonant modes, are irrelevant. Therefore, the main
objective and contribution of this work is a methodology,
for SISO systems, to design a specific filter which is able to
cancel those relevant resonance dynamics, reaching, at the
same time, the same closed-loop performance achievable
by an infinite order controller.

This work is organized as follows. A brief description of
DPS model used for control design is described in Section
2. Section 3 is devoted to the controller filter design, while
and illustrative example is shown in Section 4. Section 5
summarizes the main conclusions and future research.

2. CONTROL STRATEGY
2.1 System model

DPS, when linearized, can be represented by transfer
functions as (Bellman and Cooke (1963); Ramanathan
et al. (1989)):
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where P(s) and Q(s) are low order rational transfer func-
tions, being P(s) the part of the system without reso-
nance dynamics and R(s) the irrational transfer function
which models the resonance dynamics, where 6 is usually
related to the process residence time. For lack of space,
the mathematical development which leads to G(s) is

not included here, but it can be found in (Alvarez et al.
(2009)). Rational transfer functions can be obtained from
G(s) in Eq. (1), first order ones to reproduce the open loop
step response of the system (that usually does not exhibit
the effect of resonances lying at medium-high frequencies)
or high order ones to account for resonances by a rational
approximation of R(s). Controllers based on first order
models usually have to be detuned when high closed-loop
bandwidth is desired, while high order models require more
complex control methods.

2.2 Proposed control structure

A methodology which has proved to be easy and effective,
is to use the irrational transfer function given in Eq. (1)
for control design purposes. A simple PID controller can
be designed for the transfer function without resonance
dynamics, P(s), using for this aim any of the existing
methods in literature (e.g. Rivera et al. (1986); Ziegler and
Nichols (1942)). It is necessary to complement the control
system with another controller designed to specifically
counteract the resonance dynamics modelled by R(s). In
(Alvarez et al. (2007, 2009)), a repetitive control structure
was used to cancel the resonance dynamics. The repetitive
controller has infinity order in continuous time and a
good performance in nominal situation, i.e, without model
errors, requiring some modifications to account for model
uncertainties (Alvarez et al. (2010)).

For the study at hand, an alternative is proposed based
on replacing the repetitive controller by a filter specifically
designed to counteract the resonance dynamics. Thus, the
proposed control structure is shown in Fig. 1, where Y (s),
Ref(s) and D(s) are the closed-loop output, the reference
signal and the disturbances. G(s), P(s) and R(s) refer to
the equivalent transfer functions in Eq. (1), PID(s) is a
PID controller and F(s) is a filter specifically designed
from the frequency response of R(s). This filter has a high
order in continuous time and only counteracts the most
relevant resonance dynamics of the system but, it is able to
reach the same performance than infinite order controllers
such as repetitive ones.

3. PROPOSED FILTER DESIGN

Usually, to deal with the resonance dynamics of the
system, a low-pass filter is designed. In closed-loop, this
filter is able to smooth the resonance dynamics effects
but, at the same time, deteriorates the performance.
In this work, the filter is designed to counteract the
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Fig. 1. Proposed control structure

resonance dynamic effects without reducing the closed-
loop performance. The methodology to design the filter
uses R(s) and its frequency response analysis.

First, the particular case with Q(s) = 1 is considered. This
is the most simplest case. From this case a methodology to
develop the filter is deduced. Later on, this methodology
is extended to the general case, i.e. Q(s) # 1.

3.1 Q(s)=1

Here, there is not any transfer function smoothing the
resonance dynamics, since Q(s) acts as a filter. Thus, the
resulting transfer function which models the resonance
dynamics can be expressed as:

Ry(s) = (1—e%) (2)

The Bode magnitude plot of Rs(s) for a particular case
with # = 160, is shown in Fig. 2. It is possible to
appreciate the resonance dynamics which produce that
the magnitude suddenly tends to zero. An analysis of its
frequency response considering s = jw allows to find the
frequencies in which these resonance dynamics are located.

Ry(jw) = [1 — e %] = [1 — cos(—0w) + jsin(—0w)] (3)

The last equation has a real part which is equal to 0
when cos(fw) = 1 and an imaginary part which is equal
to 0 when sin(fw) = 0. Thus, bw = 7 - w = w/0
and, therefore, the zeros of the transfer function R,(s) are
located in:

(2m)n

s=0=j-

V>0 (4)

That is, Rs(s) has an infinity number of pairs of complex
conjugate zeros. These zeros cause the resonance dynam-
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Fig. 2. Bode magnitude plot of Rg(s)
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ics in the system and can be located as a function of
the 6 parameter. As commented previously, one way to
counteract these resonance dynamics is to use a controller
similar to a repetitive control with the form of the inverse
of Rs(s). It allows to cancel all the resonance modes but
its performance strongly depend on a good estimation
of # parameter. A simple solution consist on defining a
filter, F'(s), to counteract only the most relevant reso-
nance modes (those lying within the desired closed-loop
bandwidth).

The filter needs a pure integrator since R,(s) has a zero in
the origin. On the other hand, Fig. 2 shows that, at high
frequencies the magnitude response of the system oscillate
around 1(0 dB). Thus, a candidate transfer function base
for the filter can be:

(0.5s + k)

Fb(S) = S

()
where k is the velocity constant of Rs(s), i.e, k = 6. In
Fig. 3, the Bode magnitude plots of Fy(s) and 1/Rs(s) are
compared. Then, in order to counteract each resonance
mode individually, a cosine function is used:

kns

en(s) =

On the other hand, the k, parameter is used to adjust
the resonance mode width. Thus, it is necessary to add
as cosine functions as resonance modes one wants to
cancel. Figure 4 shows a comparison among the Bode
magnitude plot of the inverse of R(s), blue solid line, the
cosine transfer function to counteract the first and second
resonance mode, green and red solid line respectively, and
the resulting filter, F'(s), composed of the base transfer
function Fy(s) plus the cosine functions, cyan solid line. In
this picture, it is possible to appreciate as the designed
filter, F'(s), reproduces accurately the inverse of Rs(s)
until the second resonance mode and, therefore, it is able
to counteract the dynamics introduced in the system by
the first and second resonance modes.

Thus, the methodology to design the filter can be summa-
rized in the following sequence of points:

(1) Find a transfer function for the DPS with two differ-
entiable parts. A low order transfer function without
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Fig. 4. Bode magnitude plot of 1/R,(s), cosine functions
for the first (c1(s)) and second (ca(s)) resonance
modes and calculated filter F'(s)

resonance dynamics, P(s), and an irrational transfer
function which models the resonance dynamics, R(s).
(2) Design a PID controller for the free resonance dy-
namic part, P(s). The chosen method to tune the PID
can be any of the well-known methods in literature.
(3) Design a base transfer function for the filter, F(s), as
a function of the velocity constant of R(s), see Eq. (5).
(4) For each resonance mode to be cancelled (depending
on the closed loop bandwidth), it is necessary to
choose a cosine transfer function tuned as function
of # parameter, see Eq. (6).
(5) Finally, in order to complete the filter, F'(s), it is
necessary to add the cosine transfer functions to the
base transfer function, Fy(s).

3.2 Second case. Q(s) # 1

In this subsection, the methodology previously proposed
is extended to the general case, where Q(s) # 1. It is
important to highlight that in this case, the resonance
modes are not as abrupt as in the previous case shown
in Fig. 2, since the transfer function Q(s) acts as a filter.
This is illustrated in Fig. 5, where the Bode magnitude
plot of R(s) for a particular case of § = 160, 5 = —10 and
7 = 50 is shown. Moreover, these resonance modes are less
pronounced in the medium and high frequencies. Unlike
the particular case Q(s) = 1 where all the resonance modes
have the same magnitude, in this case, it is only necessary
to counteract the first two or three resonance modes, since
those are the most meaningful and that would lie within
the closed-loop bandwidth.

The first three steps of the proposed methodology, in the
previous section, can be applied in this case in the same
way, with the only difference that k, the velocity constant
of R(s) and parameter of the base transfer function of the
third step, is in this case equal to k=60 + 7+ (Alvarez
et al. (2009)). However, the fact that Q(s) # 1 complicates
the frequency analysis. For this reason, the fourth step has
to be modified. The frequency response can be calculated
considering s = jw in R(s) in Eq. (1):

R =) = (1= (22

Tijw+1
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Fig. 5. Bode magnitude plot of R(s)

MZ(LU) =1+ m + COS(Qw)Qm
) (wT + wp)
+ sm(ﬂw)?m (8)

From Eq. (8), it is difficult to find the frequencies where the
resonance modes are located, i.e. the minima of Eq. (8).
Although, these minima must be close to the frequencies
where the minima are located when Q(s) = 1, see Eq. (4).
This can be seen by doing dM?(w)/dw = 0

‘”‘%(W) _ P rz;ui) 7—2(212; B
+o COS("W)?m - Hsin(ﬂw)2m
+sin(y T ((1(117?;2)2)—2 w@9) _ o9)

However, the trigonometric expression which appears in
Eq. (9) cannot be solved as an algebraical equation. A
good approximated solution can be obtained replacing
the trigonometric expressions cos and sin for algebraical
approximations around the point where the minimum

should be found.
sin(fw) =~ (bw — (2m)n) ¥Yn > 0
(Bw — (2m)n)?
2

(10a)

cos(fw) =~ 1 — Yn > 0 (10b)
Let n be the resonance mode to be approximated. Thus,
replacing sin and cos expressions in Eq. (9) for Egs. (10a)
and (10b) respectively, after simplifications, a polynomial

equation can be obtained:

dM2w) o~

— zmz_oanzw =0 (11)
where the a,, terms (x = 0..5) are function of n, 3, 7 and
0 parameters. Then, solving Eq. (11) and choosing the
closest root to (2m)n /0, it is possible to find the frequency
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Fig. 6. Bode magnitude plot of R(s), its derivative and the
derivative approximations for w = 27 /0 and w = 47 /6

where the resonance mode is located. As an example, Fig. 6
shows the Bode magnitude plot of R(s), blue solid line,
its derivative with respect to w, green solid line, and two
derivative approximations, one for the resonance mode
close to w = 2m/0, red solid line and with a circle with the
same colour marking the frequency where the resonance
mode is located, and other for the resonance mode close
to w = 4mw /6, magenta solid line and with other circle
with the same colour marking the frequency where the
resonance mode is located.

Comparing Figs. 2 and 5, in the last case the resonance
modes are less pronounced, thus a pure cosine transfer
function is not necessary to individually counteract each
resonance mode, but the following approximation can be
used:

OnS

—_— 12
2+ kps+ a2 (12)

Cn(s) =

Contrarily to what happens in Eq. (6), three parameters
must be estimated in Eq. (12), ay, k, and §,. As in
the previous case, the «, parameter is directly linked to
the frequency where the resonance mode is located (that
depends on 0, 7 and ), that can be found finding the
roots of Eq. (11) as has been commented before. The k,
parameter is used to adjust the width of the resonance
mode and, at last, the §,, parameter is used to set the
maximum amplitude of the transfer function in Eq. (12).
To obtain its value in absolute terms, just replace in Eq. (8)
the value obtained for w and later, the magnitude value of
Eq. (5) in absolute terms and in the same frequency than
w, must be subtracted to the previous obtained result.

Thus, the resulting filter F'(s) is composed of the base
transfer function Fy(s) in Eq. (5) plus the transfer func-
tions ¢, (s) in Eq. (12). Figure 7 shows a comparative
among the Bode magnitude plot of the inverse of R(s),
blue solid line, the transfer function to counteract the
first and second resonance mode, green and red solid line
respectively, and the resulting filter, F'(s), composed of
the base transfer function Fj(s) and the necessary transfer
functions to counteract until the third resonance mode,
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Fig. 7. Bode magnitude plot of 1/R(s), transfer function
to counteract the first resonance mode, ¢;(s), transfer
function to counteract the second resonance mode,
c2(s) and calculated filter F'(s)

cyan solid line. As for the previous case, it is possible to
appreciate how the design filter, F(s), reproduces accu-
rately the inverse of R4(s) until the third resonance mode.

4. CASE STUDY

In this section, an example is presented in order to test
the performance of the proposed methodology. The case
study is a solar plant based on parabolic through collector
technology. This plant can be modelled by the following
non-linear model, that describe the energy balance in the
fluid, Eq. (13), and in the pipe (subscript w), Eq. (14):

oT

oT
A;pC— =aD;h;(T, —T 1
irCgr +apCo = ihi(Tw —T) (13)
T.
pronaa—tw = In,G — wDoho(Ty — Ty) —

For lack of space, as the meaning of the physical pa-
rameters, that appear in the previous equations, as the
complete description of the plant cannot be included here
but, they can be found in (Camacho et al. (2007)). In a
certain operating point (defined by solar irradiance I =
900 W/m?2, ambient temperature T, = 25°C, fluid flow

= 0.0005 m?/s, inlet fluid temperature T}, = 200°C and
outlet fluid temperature T' = 252°C'), the relation between
the controlled variable T" and the control variable g, can
be approximated by the transfer function:

—430(57.44 1 95 1
— ( S + ) 1 _ 6—1055 ( 5 + ) (15)
N————

G) = —arats 1 1)

P(s)

134s +1
Q(s)

R(s)

Three different control systems are compared. The first
one is a PI controller tuned through a first order transfer
function approximation to the model in Eq. (15) obtained
from the frequency response in Fig. 8 (without accounting
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for resonances). The second one is a PD controller tuned
using only P(s) together with the inverse of R(s), similar

to that presented in (Alvarez et al. (2007)) using an infinite
order controller. Finally, the third one is the same PD
controller used in the second case, together with a filter
F(s) developed following the methodology presented in
the previous section.

In the first case (PI control), the parameters of the first
order approximation are given by a static gain k =
—79120 °Cs/m?® and a time constant 7 = 90 s. From
this approximation, a PI controller can be tuned based on
the Internal Model Control (IMC) approach (Rivera et al.
(1986)). To use the IMC methodology, the parameter
must be tuned. This parameter, that can be adjusted by
the user and determines the speed of the response, is tuned
searching a tradeoff between robustness and performance.
Thus, if € is set to € = 50 and following the tune rules,
row A, given in (Rivera et al. (1986)), the values of the
proportional gain and the integral time of the PI controller
are k, = —2.275¢7° m3/°Cs and 7; = 90 s, respectively.

On the other hand, the PD controller is tuned using P(s)
in Eq. (15) and using the IMC methodology as well. In
this case, row P of the tune rules given in (Rivera et al.
(1986)) are used. With the same value for e parameter
than in the PI controller designed previously, the values
of the proportional gain and the derivative time are set
to k, = —4.65¢75 m3/°C's and 74 = 27.44 s . Moreover, a
filter is added to the derivative part of the PD controller in
order to: i) obtain a causal transfer function and ii) cancel
the effects of the zero in P(s). Thus, the parameter of this
derivative filter is 74y = 57.44 s. This PD controller is
complemented in two different ways: i) a transfer function
which is the inverse of R(s) in Eq. (15) and, ii) with a
filter F'(s), which is designed with the aim to counteract
the dynamics of the first three resonance modes, following
the methodology presented in the previous section.

The closed-loop results of these three control systems, the
PI controller, the PD controller together with the inverse
of R(s) and the PD controller together the designed filter
F(s), at the time to control the non-linear model presented
in Egs. (13) and (14) are shown in Fig. 9. The PI controller,

G(s) transfer function
First order approximation

Magnitude (d8)

10° 107 107 107" 10°

Frequency (radsec)

Fig. 8. Bode magnitude plot of G(s), blue solid line, and
its first order approximation, green solid line
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magenta solid line in the graph, shows oscillations both in
tracking and disturbance rejection coming from unmod-
elled dynamics, not fulfilling control requirements imposed
for the € parameter. The PD controller together with the
inverse of R(s), red solid line in the graph, is able to almost
counteract the resonance dynamics and fulfill the control
requirements. Notice that Eq. (15) is an approximation
to the nonlinear model in Egs. (13) and (14) and thus,
unmodelled dynamics prevent full compensation of the
resonance modes, but they are compensated to a large
extend.

The third control system composed by the same PD
controller than the previous case together with the de-
signed filter F'(s), obtains almost the same results than
the previous case (even smoother ones), what was the
main objective of this work. Notice that in both cases, the
control signals provided by the PD controller with both the
inverse of R(s) and the filter F'(s), have an oscillatory form
in order to obtain an overdamped closed-loop response
cancelling the resonances.

5. CONCLUSIONS AND FUTURE WORKS

In this work, a new methodology to design a filter to
counteract the effects of resonance dynamics in distributed
parameter systems is described. It has been probed that,
with a control system composed of only a PID controller,
the effects produced by the resonance modes cannot be
cancelled, since the PID controller has not enough degrees
of freedom to do it. The best solution is to complement the
PID controller with a filter, but not with a low-pass filter,
since it deteriorates the closed-loop performance. In this
work, the filter is specifically designed to counteract the
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Fig. 9. Closed loop results. System control composed by PI
controller, cyan solid line. System control composed
by PD controller plus the inverse of R(s), red solid
line. System control composed by PD controller plus
the filter F'(s), blue solid line
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of the closed-loop performance. The filter can be tuned
with a few parameters, all of them related with the
frequencies where the resonance modes to be counteracted
are located. Notice that it is not necessary to compensate
for all the resonance modes, but the most significant
ones. Moreover, the filter has produced almost the same
performance than an infinity order controller that cancels
all the resonance modes (Alvarez et al. (2007)). Future
works are aimed to do the filter more robust in the
presence of uncertainty in the frequencies in which the
resonance dynamics are located, to include similar filters in

disturbance compensation controllers (as done in (Alvarez
et al. (2009))), aimed at avoiding the excitation of the
resonance modes by the disturbances.
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