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Abstract: The aim of this paper is to estimate the joint confidence region for the tuning parameters of the 
PID controller. Considerations on the statistical independence and the linear relationship between the 
tuning parameters for a more realistic scenario are taken into account. In order to capture the data 
necessary for the simulation, an appropriate structure was implemented, consisting of a process-model-
based controller. By using the data resulting from the simulations, it was also possible to find the 
probability density function for each tuning parameter, as well the region of joint confidence of such 
parameters, which indicates a contraction of the region when compared with the standard level of 
significance. What is also shown is how to restore the joint confidence region by means of the Principal 
Components Technique. 

Keywords: PID Controller, Tuning Parameters, Joint Confidence Region. 

 

1. INTRODUCTION 

Even after decades of research into and development of more 
efficient tuning methods and refined types of instrumentation 
and despite the process being better understood, good tuning 
remains a challenging problem. 
Classical methods, such as that of Cohen-Coon, as well as the 
Ziegler-Nichols tuning technique, have been essential 
requirements to establish controller settings.  
Where there has been poor understanding of the process in 
which linearized models are normally used and the nature of 
the process is neither stationary nor weakly stationary, a 
“Self-Adaptive Control System” has been systematically 
used, and associated with several other strategies, according 
to Skogestad (2003) and Aström (1995). Some statistical 
tools have also been cited by Ruel (2004) to identify if tuning 
parameters are appropriate. However, the heuristic approach 
based on the experience of technical personnel, associated 
with the trial and error method, has proved to be the best way 
to tune control parameters, at least from the practical 
standpoint. In spite of all the efforts, it is well-known that all 
these methods still leave much to be desired. 
It is well-known there is a certain amount of inherent or 
natural variability or still background noise in any production 
process, regardless of how well designed or carefully 
maintained it is. However, it should be emphasized that one 
of the major difficulties about a product or process having a 
flawless quality characteristic lies in the variability arising 
from assignable causes or special. 
Therefore the question which this paper focuses on is related 
to the difficulty of finding accurate deterministic values for 
the control parameters, and thus to provide a better practical 
answer for this problem. This is strongly related to 
determining the joint confidence region. This article also 
considers two intrinsically correlated matters, which play an 

essential role in such investigations: the ineffectiveness of the 
current methods and the stochastic nature of the process. 

2. DETERMINISTIC OPTIMUM AND ROBUSTNESS 

The conceptual understanding of deterministic is that if all 
input information in the model is specified, the model 
generates only one value for every output. In deterministic 
optimization, besides the objective function, the constraints 
are defined in a deterministic way. However, due to the 
complexity of the process, the incorporation of uncertainties 
into the system has been postulated by Padulo et al. (2008), 
as intrinsically necessary for the purposes of robustness. 
It seems appropriate at this point to reflect on robustness, by 
indicating the problems which can be addressed by such an 
approach. In essence, robust methods enable the optimization 
of the deterministic response of a system to be driven about a 
mean value, thus maximizing the robust performance while 
minimizing the sensitivity to random parameters. In other 
words, the robust objective is obtained by minimizing the 
variance and expectation (mean) simultaneously.  
A classical approach to a deterministic optimization problem 
can be formulated by the following treatment: 

Min f (x) such that gi (x) ≤ 0, for I = 1,2,3,….,r 
     and    xL ≤ x ≤ xU   

where L and U denote lower and upper bounds and x is the 
vector of design variables and parameters.  
As to robust design, according to the work Paiva et al. (2010) 
and Padulo et al. (2008), such  a formulation can be rewritten 
as follows: 
                             Min  F(µf(x),σf(x)) 
subject to    Gi((µg(x),σg(x)) ≤ 0 
    P (xk

L≤xk≤ xk
U) ≤ Pbounds 

µ and σ denote the mean and standard deviation respectively 
of the probability distribution, which, without loss of 
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generality, can be considered as a Gaussian distribution. To 
ensure the robustness, the design variables can be considered 
deterministic or stochastic, while the parameters r also 
included in vector x are characterized by their probability 
distribution. Pbound, describing an area within the distribution 
of probability and representing a universe of all possible 
results, means the probability with which the mean of the 
design variables and parameters belong to the original range, 
xL ≤ x ≤ xU, which correspond to the confidence limits 
associated with the level of significance (α). Since the 
probability distributions by definition can vary from -∞ to 
+∞, and as it is impracticable to work with the open interval, 
it is necessary to close the distributions, and set an interval, 
taking into account the type I error, or a level of significance 
(α), induced in such an approach.  
Given that the robust objective and constraints are functions 
of the mean and the variance and both depend on the 
probability distribution of the variables and parameters, the 
universe of all possible results for the optimization process, 
established by a central tendency index and a dispersion 
index, should be carefully considered. In the case of the 
objective function being a function of many variables and 
parameters, the multivariate probability distribution with a 
joint probability density function should be taken into 
account. 
Thus, this paper sets out to construct the joint confidence 
region for the PID parameters characterized by P (xk

L≤xk≤ 
xk

U), which include the true values of the parameters with a 
determined degree of probability (1-α). 
It should be observed that a reduction of the confidence 
region has severe implications for the robustness desired 
which should be as wide as possible with regard to the design 
of robust controllers.  

3.  THE SYSTEM  

As presented in Fig. 1, a jacketed vessel heater connected to a 
control structure including a supervisory system was 
considered for analysis. 

 
Fig. 1: System under study 
 
Fig. 2 illustrates how information flows, as well as the block 
diagram that represents the identification procedure and at 
what point the tuning parameters are set. There is a list of 
symbols at the end of this paper in which the input and output 
signals and intermediaries, as well as the control parameters, 
are all clearly defined. 

In order to obtain the best set of conditions for monitoring 
and control to be used in industrial plants, a supervisory 
system was built in the language of object-oriented 
programming, as shown previously in Fig. 1. 

 
Fig. 2: Diagram of a generalized closed-loop structure with 
identification block  
 
This enabled on-line information on the process variables and 
parameters to be extracted. Such information is needed to set 
up self-tuning control and is based on the work of Aström 
(1997). In order to simulate the operating conditions of an 
industrial plant, disturbances were introduced into the 
temperature of the inlet stream and into the stream itself.  
 

4.  THE CONTROL STRUCTURE 
 
4.1 Building the Model 
 
In order to provide a more realistic scenario, yet one in which 
the model differs in some way from the real process, this 
section describes the model and the process used for 
simulation purposes. 
The dynamic modeling for the heating tank was derived from 
the conventional mass and energy balances, which results in 
the dynamic behavior for the liquid level and the temperature 
of the system under study. From this point on, such a strategy 
will represent, in fact, the process.  
The discrete-time model to be used in the following 
procedures corresponds to a combination of the convolution 
model and the autoregressive model with exogenous 
inputs, which can be expressed by: 

)()()2(2)1(1

)()2(2)1(1)(

...

...

tmtmtt

ntnttt

vububub
yayayay

++++

=++++

−−−

−−−

                    (1) 
where ai and bi are the coefficients obtained by regression, 
and ν(t) denotes the combined effects of measurement noise, 
unmeasured disturbances and modelling errors. Since the 
order of the regressive model is described by n and m, the 
system may achieve better adjustment, relative to the 
mismatch between modelling and process, if large values are 
assumed for such parameters. However, the higher-order 
models can present some difficulties, namely: the distinction 
between the poles which correspond to structural modes and 
spurious poles, the computational efforts and memory 
requirements. Therefore, models of a lower order are always 
desired. How to estimate the order of such a model can be 
found in Moore et al. (2007). 
Taking into account the backward shift operator and 
expressing this in a vectorial structure, the resulting in: 

)()()( tt
T

t vy += ϕθ                                                                  (2) 
where θ, φ are the matrices of the coefficients and of the 
variables respectively. 
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Given that the classical recursive least squares method 
(RLSM), demonstrated by Ljung (1983) were used, the 
model parameters can be obtained by: 
 

∑∑
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−

=
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1
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)()()( .ˆ ϕϕϕθ

                                               (3) 
 
Since the difference between the process and model was 
minimized, then, the parameters obtained result in the best 
predictions for the output variable in the sense of minimum 
variance.  
 
4.2 The PID Control Law and Confidence Region 
 
It is easy to show that the classical PID control law can be 
written into the discrete-time model as: 
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In (4) can be rewritten, resulting in (5), where η , x1, x2 and 
x3 are denoted by ∆mc, (e(t) – e(t-1)), [(e(t) + e(t-1)) /2] and 
[(e(t) –2e(t-1) + e(t-2))/ ∆t] respectively. 

321 xkxkxk dc
i

c
c τ

τ
η ++=

                                         (5) 
In order to establish the joint confidence of the parameters of 
the controller, a slight modification to (5) must be made, with 
the aim of fostering the most favourable conditions for such 
an approach. Hence, the model to be used for analysing the 
reliability of the tuning parameters should be expressed as per 
(6). This is written as a function of the expected value of the 
variables xi, where the parameters β0, β1 and β2 denote kc, kc/τi 
and kcτd, respectively. With such modifications, the estimates 
of β0, β1 and β2, can be found without solving coupled sets of 
equations, which are statistically independent. Furthermore, 
using the least square method, the estimated parameters are 
unbiased, as they have the minimum variance. 
 

)()()( 332221110 xxxxxx iiii −+−+−= βββη                          (6) 
 
Thus, the estimates (bj) of the parameters βi can be calculated 
from the following:  
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                           (7) 
Consequently, since the data can be directly obtained from 
the systems, then the estimate of the output variable η can be 
easily found.  
Bearing in mind the basic formalism for generating the joint 
confidence region, it must also be observed that the sum of 
squares for the deviation between the expected values β0, β 1 
and β2 and their estimates b0, b1 and b2 are distributed in 
accordance with the σ²yχ2 distribution with 1 degree of 
freedom, where χ2 denotes the probability for the chi square 
distribution. Since all the deviations can be considered as 

statistically independent, their sum is also distributed as per 
σ²yχ2 but with a degree of freedom equal to 3, resulting in the 
following: 
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It is quite straightforward from elementary statistics that a 
variance ratio can be formed by means of the F probability 
distribution expressed by the following relationship: 
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where )3,3( −= ∑ ipv denotes the degree of freedom and (1 – 

α ) the critical level of confidence. 
 
When (9) is re-ordered, it can be clearly observed that it 
represents an ellipse in parameter space (coordinates: β0, β 1 
and β2) for a given percent of confidence region, that is,                
(1 – α)100.  
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A pooled estimate of residual variances was used to obtain 
the variance of yi ( 2

iy
σ ). 

Equations described in detail have been omitted throughout 
because of space constraints. 
 
4.3 Tuning Procedure 
 
It should be noted that classical auto-tuning is always 
implemented with the relay feedback connected to the 
process, what it can give rise to some disadvantages because 
the process is uncontrolled during the tuning time. To 
overcome this difficulty, a slight modification was made to 
the strategy, as shown in Fig. 3.  

 
Fig. 3: Block diagram of generalized control structure  
 
Two basic differences between classical auto-tuning and the 
strategy now developed can be noted, namely: classical auto-
tuning is based on frequency response methods while the 
approach proposed operates in the time domain besides 
making effective use of a model for the process. In this 

(10) 

(4) 
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methodology, the convolution model presented in Section 4.1 
was identified and used as the basic component in auto-
tuning the relay. It can also be verified that the auto-tuning 
strategy may be run with the ongoing process and control 
system. 
The implementation of the auto-tuning procedure was carried 
out by means of generating a stimulus introduced in the relay 
(u ), which fluctuates between ± ε, chosen suitably, for 
generating a controlled oscillation in the output variable of 
the model, m

ty )( , with constant amplitude. By doing so, the 

ultimate gain and ultimate period can be determined in each 
sampling instance and the parameters of the controller are 
estimated using the classical tuning procedure. 
By using the conventional rules reported by Aström (1997), 
the tuning parameters for the PID controller can be 
established. 

5. RESULTS AND DISCUSSION 

Despite the method of fitting being very good, the model to 
be used as expressed by (1) depends on the values of n and m 
in order to choose the appropriate functional form, taking into 
account the one that best describes the process. After 
conducting a few simulations, such values can be found with 
minimum computational efforts, as illustrated in Fig. 4. 
 

 
Fig.4: The behaviour of the model for n and m higher than 5. 
 
It can e verified that for high values, the functional form 
representing the model becomes sufficiently close to the 
process. In the case of 100== mn , the result proves to be 
satisfactory. For convenience, it is assumed n and m have the 
same value. For the ongoing analysis and since the aim of the 
study is not to develop an auto-tuning method, it should be 
highlighted that the over-specification of the model order can 
be reasonable and of interest, given that the mismatch 
between the model and the process can be thus minimized, 
and thereby it will be possible to reduce the additional 
interference of the model on such a procedure. In practice, 
the values obtained for the analysis of interest are provided 
by the system without the need of such an auto-tuning 
system, as introduced in this paper. 
Since the model parameters were calculated according to (3), 
then the system can run in order to verify the dynamic 
behaviour of the output variable, and be compared with that 
of the process when submitted to a disturbance of 10% in the 
value of set point.  

With the aim of adjusting the parameters of the PID 
controller on-line, a configuration for the control system was 
established, consisting of a relay, a convolution model and an 
algorithm for tuning parameters, as per Fig. 3. The stimulus 
generated by the relay is based on adequate amplitude and is 
stabilized, in the form of a square wave of ± ε, resulting in an 
output sinusoidal wave with constant amplitude. The 
relationship between the input waves and output present in 
Fig. 5 enables the final period and ultimate gain to be 
determined, as per the following in (11). 

a
Ku

π
ε4

=
                                                                             (11) 

 
Fig. 5: Stimulus generated by the relay and response of the 
output variable 
 
Since the system was running, the PID controller was 
automatically tuned, using the tuning rules in accordance 
with Aström (1997). Thus, a set of parameters in each 
sampling period was found resulting in the closed loop 
response with the auto-tuning as depicted in Fig. 6.1. and 
Fig.6.2 shows the corresponding close loop response without 
the auto-tuning procedure. The results indicate a very good 
agreement between the process and the model for both 
devices in spite of the presence of large disturbances. It can 
also be noted that the system operating with the auto-tuning 
yields a superior performance.  
 

 
Fig. 6: The behavior of the output temperature for the model 
and process. 
 
With the auto-tuning device implemented on-line and having 
in mind the joint confidence region drawn for the tuning 
parameters, the values of such parameters were recorded and 
distributed according to a probability function, as shown in 
Fig. 7. 
It can be also verified that the tuning parameters follow a 
probability distribution which can be considered at least 
approximately a normal N(µ, σ2). Furthermore, with regard 

without auto-tuning 

when the auto-tuning is running 
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to the sampling variability and considering the degree of 
linear relationship between the tuning parameters, the data 
collected can be statistically analysed, resulting in the 
covariance matrix or in the correlation matrix given in Table 
1. 
 

 
Fig. 7: The probability density function for the tuning 
parameters of the PID controller. 
 

Table 1:  The correlation coefficients ρ  

 
 
Strictly speaking, real data always present some degree of 
correlation, as can be observed from Table 1. Consequently, 
the parameters are not statistically independent. However, for 
an ideal condition where the tuning parameters β0, β1 and β2 
can be considered statistically independent, the joint 
probability may be written as the product of the 
corresponding individual probabilities. Since it is normal 
practice to consider it acceptable to have a significance level 
of α=5%  which corresponds to a 95% confidence interval for 
the individual parameters, then the joint probability given by 
the P(β0,β1,β2) results is equal to 0.857. This indicates a 
severe reduction in the joint confidence region when 
compared with a significance level of 5%. 
Otherwise, if an approach is considered that is a little more 
realistic and in which the tuning parameters cannot be 
considered statistically independent, the joint probability is 
given by: 
 

)/()/()()( 102010210 βββββββββ PPPP =                                 (12) 
However, due to the correlation coefficients ρ(β1β0) and 
ρ(β1β2) being very small, which indicates a very weak linear 
association between the parameters, (12) can be rewritten as: 
 

 )()()()( 210210 ββββββ PPPP =                                           (13) 
even considering that the use of the correlation coefficient ρ 
is a conceptually weak measure of the conditional 
probability. The result yields P(β0,β1,β2)=0.85. 
From the practical standpoint, the last two considerations 
imply an 85% joint confidence region. It should be 
emphasized that for a real case, such a reduction is even more 
drastic. 

When the values obtained for the joint confidence regions are 
introduced into (10), the following ellipsoid can be drawn, as 
shown in Fig. 8. 

 
Fig.  8: Joint confidence region for the significance level α= 
5% and 15%. 

5.1 Restoring the joint confidence region 

 
As shown in the previous section, the joint confidence region 
for the system mentioned presented a considerable reduction, 
at the most favorable estimate, of 15%.  This means that the 
robust region within the constraints at the expected 
probabilistic level was reduced, which may adversely affect 
the robustness of control design. Thus, it is essential to 
restore the robust region at the significance level acceptable.  
The basic tool with sufficient ability to deal with this problem 
relies on Principal Components Analysis (PCA).  PCA is 
related to the variance-covariance structure by means of 
diagonalizing the covariance matrix, thus making it possible 
to transform the related variables into a set of uncorrelated 
variables denoted as Principal Components, which are linear 
combinations of the original variables. The essence of the 
method is to reduce the dimension of the system, in which the 
maximal variance lies in the first principal component. This 
is highly meaningful due to the possibility of ignoring the 
other principal components in view of their insignificant 
contributions to the total variability. Such a technique has 
been substantially described in work of Jackson (1991) and 
Johnson  (1992). 
By using the covariance matrix S obtained from the data 
previously mentioned, such a matrix can be reduced to a 
diagonal matrix D by premultiplying and postmultiplying by 
an orthonormal matrix U, by the relationship U’SU=D, where 
U and D are given by: 

⎥
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⎤
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The columns vectors of U are the eigenvectors of the 
covariance matrix, being used to transform the correlated 
variables into the new uncorrelated variables (z) called the 
principal components  (PC’s), expressed by )(' ββ −=Uz and 
given by: 

)(6941.0)(1875.0)(6950.0

)(1376.0)(9822.0)(1276.0

)(7066.0)(0071.0)(7076.0

2211003

2211002

2211001

ββββββ

ββββββ

ββββββ

−+−+−=

−+−−−=

−−−−−=

z

z

z
 

The elements of diagonal of D are the eigenvalues of S, 
which reveal the individual contribution of each principal 
component for the total variability. In other words, for the 
case considered, the first principal component corresponding 
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to z3 contributes to 66% of total variability while the second 
principal component given by z2 explains 32% of the total 
variance. The third PC, z1, has an insignificant contribution. 
Therefore, the total variability can be well explained by the 
first two principal components, thereby reducing the 
dimensionality of the system to 2 new variables, z3 and z2, 
which are, in fact, uncorrelated. It must be observed that 
based on the properties of PC, the original variables may be 
stated as a function of the principal components by inversion 
of z, that is, Uz+= ββ .  
Thus, when a significance level of α=5% which corresponds 
to a 95% confidence interval for the individual parameters is 
considered acceptable, then the joint probability for both 
uncorrelated PCs is equal to 0.9, related to α=10%, which 
indicates a satisfactory recovery of the joint confidence 
region, as shown in Fig.9. 

 
Fig. 9: Joint confidence region for the significance level 
α=10% and 15% 
 

6.  CONCLUSIONS 

Due to the need to capture the data from simulations, a 
structure consisting of a block for estimating the recursive 
parameter and automatic tuning, connected to the process, 
was developed, in which the parameters of the process model 
are updated on-line. This allowed the on-line generation of 
information to be used in determining the joint confidence 
region. 
With the aim of providing a more realistic scenario for the 
purposes of simulation, a convolution model was used and 
fitted while the process corresponding to a stirred tank heater 
was modeled based on the first principle.  
Although not the primary goal, a strategy for auto-tuning 
device was also proposed in a way that allows a continuous 
operation of the process to be always governed by the control 
system. The results of the simulation, shown in Fig.6, 
indicate that the performance was satisfactory for the 
purposes of this paper. 
Based on a statistical procedure that takes the sum of squares 
for deviation between the parameters into account, the joint 
confidence region was established for the values of 
significance level α, when the parameters are considered 
either statistically independent or to be cases in which 
statistical dependence should be considered. 
Fig.9 illustrates the joint confidence region for the parameters 
of the PID controller, which allows the conclusion to be 
drawn that even for an ideal case study, the confidence region 
presents a significant reduction to 85%, which cannot be 
tolerated. When a more realistic approach is carried out, in 
which the parameters show strong statistical dependence, 

then, clearly, an even more severe reduction of the joint 
confidence region can be determined.  
Such a reduction has a severe impact on the size of robust 
range in the design of control structure. However, by using 
the methodology of Principal Components, it was also shown 
how it is possible to minimize the loss of robustness by 
means of reducing the dimensionality of the system, by 
transforming correlated variables into new uncorrelated 
principal components. Thus, with the generation and 
appropriate choice of uncorrelated variables, which 
contribute strongly to the total variability, the robustness can 
be kept at an acceptable level of significance of 10%. 
Additional improvements in the control structure can enable a 
still more meaningful recovery of robustness. 
 

LIST OF SYMBOLS 
an, bm  coefficients of the dynamics recursive model     
bi, coefficients’ estimate of the regression coefficient of the 
model; e(t), deviation variable;  F(1- α);( ν1,ν2), F-distribution 
test ; 2

ˆiy
s , 2

îb
s  variance of output variable and variance of ib̂   

tn-2;α/2, t-student distribution; u(t),  process input variable;  
umax(t), umin(t), maximum and minimum value of variable 
input delay; jx deviation variable and average deviation of 
the variable; y(t), ym(t), process output variable and of the 
model; iŷ  estimated process output with parameters

jβ̂  of the 
model;  τi, τd, integral and derivative time parameter      
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