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Abstract: This paper deals with the development of a PID control architecture for better
utilization of the storage battery connected to a PhotoVoltaic (PV) Plant. The problem of the
stochastic nature of the PV plant is overcomed scheduling the power feeding of the electric line.
A neural network is used to derive the one-day-forecast of the PV production and a supervised
PID controller is proposed to control the charge and discharge current reference to the battery,
that is used as an energy buffer. The communication between all the parts of the system and
the supervisor controller is made via TCP/IP protocol. The Energy Resources company has
supported the experimentally tests of the proposed solution on a 14 KWp PV plant and a
lithium battery pack.
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1. INTRODUCTION

As concerns about climate change, rising fossil fuel prices,
and energy security increase, there is growing interest
around the world in renewable energy resources. Since
most renewable energy sources are intermittent in nature,
it is a challenging task to integrate a significant portion of
renewable energy resources into the power grid infrastruc-
ture. Traditional electricity grid was designed to transmit
and distribute electricity generated by large conventional
power plants. The electricity flow mainly takes place in one
direction from the centralized plants to consumers. In con-
trast to large power plants, renewable energy plants have
less capacity, and are installed in a more distributed man-
ner at different locations. The integration of distributed
renewable energy generators has great impacts on the
operation of the grid and calls for new grid infrastructure.
Indeed, it is a main driver to develop the smart grid for
infrastructure modernization, which monitors, protects,
and optimizes the operation of its interconnected elements
from end to end with a two-way flow of electricity and
information to create an automated and distributed energy
delivery network. On the other hand, while renewable
energy systems, such as photovoltaic and wind plants,
have problems of controllability due to their intermittent
output it becomes necessary to find a way to schedule
power output in a deterministic manner. This problem
has been deeply investigated in literature, in particular for
what regards the forecasting and power scheduling from
wind plant (Strunz et al. (2003), Lange et al. (2005)).
The prediction of solar yields is becoming more and more
important, especially for countries where legislation en-

courages the deployment of solar power plants (see Lorenz
et al. (2009)). In Italy, where the installed photovoltaic
(PV) power amounts is more than 8 GW, a proposal of
law of 2009 included 20% more incentives for the correct
hourly prediction of the power production of the next day
(with an error of less than 10%) for at least 300 days/year.
Forecast information on the expected solar power produc-
tion is necessary for the management of electricity grids,
for scheduling of conventional power plants and also for de-
cision making on the energy market, as described in Lange
(2006). There are models including those called clear-day
solar radiation, half-sine, Colares-Pereirs and Rabl, and
ARIMA hour-by-hour solar irradiance (see Li et al. (1998);
Ren et al. (2002); Dorvlo et al. (2002) and reference
therein), but they’re used to derive irradiation forecast
up to one hour. In this work the considered forecasting
scheme is based on RBF Neural Network and used to
derive predictions of solar irradiation based on forecasts
up to 48 hours ahead provided by meteo websites and
Energy Resources’ database of measured solar irradiation.
The irradiation forecast is used as input for a PV’s model
to obtain the forecast of the PV production. The last
element to provide scheduled power output is the storage
system, a lithium battery pack used as an energy buffer to
store the exceding power produced or to supply the lack of
power compared with the reference. To achieve this target
is proposed a PID (Proportional, Integral and Differential)
controller with a supervisor that can activate some features
in order to obtain a globally satisfactory step response and
set-point tracking.

The paper is organized in the following way. In Section
2, some details on the system architecture are recalled,
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the proposed PID algorithm with its improvements are
described in Section 3, the PV production forecast method
is briefly discussed in Section 4. The implementation
settings and the analysis of the control performance are
reported in Section 5.

2. SYSTEM ARCHITECTURE

Proportional-Integral-Differential (PID) controller is by
far the most popular feedback controller in the field of au-
tomatic control. Following the lines of literature (Ippoliti
et al. (2005),Copeland et al. (1994), Sehab (2007)) the
approach proposed here situates in the area of supervisory
control, whose greater flexibility and potentiality with
respect to fixed controllers is currently being more and
more recognized. The motivations for applying supervisor
strategies to the design of PID controllers can be outlined
as follows. When using a single, time-invariant PID, a non
fully satisfactory closed loop performance can be obtained,
even if the PID is properly chosen. Large overshoot, poorly
damped oscillations and too long rise time need to be
avoided in our application, as those situations can seri-
ously damage the devices of the system or compromise
the performance distancing the achievement of the aim. To
reduce the aforementioned inconveniences, it appears quite
natural to design a PID controller which can be modified,
from time to time, according to the characteristics of the
produced step response (see Liu et al. (2010)). The time
varying control law is here realized allowing a supervisor
to select the most appropriate among a predefined list of
features. The idea is to define an activation policy among
some fixed features to obtain a globally satisfactory step
response and set-points tracking.
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Fig. 1. Scheme of the whole system.

In figure 1 red continuous lines represent power fluxes,
blue continuous lines are the information fluxes that goes
over TCP/IP protocol and black dotted lines are datas
exchanged between software components. The supervisor,
the RBF network and PID controllers are Labview soft-
wares located on a server in the base of the company
Energy Resources. The aim of the supervised controller
is to keep the total instant power feeding the power line
(composed by PV production, inverter generation and
power absorbed by the battery charger) equal to the PV
production forecast. As appears in fig 1, two different
PID controllers regulates the inverter power generation
and battery charging. The setpoint r1(¢) and ro(t) of PID
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controllers (respectively the Inverter and Battery Charger
one) is computed by the supervisor from the difference r(t)
between the forecasted PV production and the measured
one (r(t) = P¢(t) — Ppy(t)) and the measure of battery
State Of Charge (SOC(t)). The measures used as feedback

Table 1. Set Point value for PID controllers
r(t)  SOC(t) ri(t) ra(t)

>0 >25% r(t) 0
>0 <25% 0 0
<0 <8% 0 [r ()]
<0 >8% 0 0

by the two controllers are the power (W) absorbed and fed
to the power line (Poy (t) and Pryy (t)), while the output
of both PID controllers (mq(t) and mo(t)) is a current
(mA), necessary to drive the inverter and battery charger.
The PID sampling time is 100 ms, while, as descibed on
the following, the supervisor acts every 60 s, computing the
correct setpoint and the appropriates PID improvements.

3. IMPROVED PID CONTROLLER

The PID function can be expressed as follows,
m(t) = kpe(t) + kie;(t) + kaea(t) (1)

where e(t) is the error function, k), is the proportional gain,
k; is the integration gain and k4 is the derivative gain.
e(t), the difference between the desired input value and
the actual output, will be sent to the PID controller, and
the controller calculates both the derivative eq(¢) and the
integral e;(t) of this error function to control the system.

The proportional controller, the first term in (1), is the
proportional action, which provides an overall control ac-
tion and can reduce the error between the desired input
value, and the actual output, but cannot fully eliminate
this error. The integral controller, the second term in
(1), has the effect of eliminating the steady-state error.
When the error lasts, it can gradually enhance the control
strength. But it may cause the transient response wors-
ening. The derivative controller, the third term, has the
effect of increasing the stability of the system, improving
the transient response through high-frequency compensa-
tion by a differentiator. The incremental PID algorithm
is an improved vision of the PID algorithm. Unlike the
above PID controller, it is suitable to eliminate the error
accumulation influence on the system, and its output takes
the incremental form of (1) and is defined as:

Am(K) = kpAe(K) + kie(K) + kqg[Ae(K) — Ae(K —1)](2)

where Ae(K) can be expressed as follows, Ae(K) =
e(K) — e(K — 1) In the following the main features
introduced to improve PID performances are described.
Notice that the reference to each PID controller changes
every 60 seconds according to the rules in table 1.

3.1 Adding Dead Zone

When system comes into steady state, the deviation is
very little. If deviation e(K) fluctuates in a little range,
the kernel controller will output a little control variable
after computing the tiny deviation. As a result, the output
controlled value, in a little range, incessantly changes
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its direction, frequently acts, causes vibration, which not
only affect the output controller, but also disadvantage
to battery which is charging. To solve this problem, we
can apply the PID algorithm with adding dead zones, the
control expression is:

o 0 if le(K)|<e
e(K) = <e(K) if le(K)| > eﬁ) (3)

where e(K) is location tracking deviation, and eg is a
adjustable variable. The specific values of eq is determined
by the supervisor every 60 seconds based on the sampling
precision of the devices and by the percentage error
between the RBF network prediction and PV production.

3.2 Speed-Change Integral

In PID control algorithm, the role of the integral part is to
eliminate static error and improve control accuracy. The
requirement under the system of integral is that integral
role should be reduced or even nothing when deviation is
large, and should be strengthened when deviation is little.
In the PID algorithm, the integral coefficient will produce
bigger overshoot or even integral saturation when taken
large value and can not eliminate the static error when
taken small value. To solve this problem in the battery
charge control system, this article suggested that change
the cumulative rate of integral term on the basis of the
measured values and the setting value of deviation, and
achieved remarkable results. The idea is to modify the
integral expression in (2) to f(e(K))k;e(K), where:

0 Zf |6(K)| > eMAX
—e(K
emax — e(K) if le(K)| < enmax

fe(K)) = (4)

EMAX

Notice that eprax is the absolute value of the initial
tracking deviation, computed by the supervisor every 60
seconds, when a new setpoint is defined.

3.8 Anti-Integration Saturation

The so called integral saturation is that, the output of
the PID controller, as the accumulation of the integrals
influence, makes its actuator reached the limiting position
(maximum or minimum), but the output m(K) calculated
by the controller is increasing still, and the value opening is
not be further increased, it is the time that the controlled
output from the controller is out of the normal range and
fall in saturation region. If the reversal value happened in
the system, m(K) will quit from the saturation region, the
deeper it be in the saturation, the longer of time it takes
to quit. During the time, actuator is still in the limiting
position, and cannot act immediately as the reversal values
change, at this time the system makes the degradation of
properties as out of control. This phenomenon is called
integral saturation. The idea of anti-integral saturation is
that judge the controlled output of last time is out of the
range or not when calculate m(K), if m(K — 1) > Unaq,
only add the negative deviation; if m(K — 1) < Uypin, only
add the positive deviation. This algorithm can prevent the
control variable in the saturation region for a long time and
make possible the following of the time varying setpoint
(one of the main features of this work) without having
longer transient.
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4. PV PRODUCTION FORECAST

Our forecasting scheme, based on RBF Neural Network,
is used to derive predictions of solar irradiation based on
forecasts up to 48 hours ahead provided by meteo web-
sites and Energy Resources’ database of measured solar
irradiation. The irradiation forecast is used as input for a
PV’s model to obtain the forecast of the PV production.
The irradiation is forecasted on the plant’s panel plane
and orientation. The RBF network algorithm proposed by
Cavalletti et al. (2007), Corradini et al. (2003) and Chen
et al. (1991) is used with the set of experimental data
composed by the pairs (z(n),y(n)), n = 1,2,... where
x(n) contains the whether forecast, the number of day
of the year, the hour of the day, and y(-) is the solar
irradiation. Sampling time is one hour and datasets have
been also normalized, between 0 and 1 in order to have the
same range. Tests are based on data acquired from August
2010 to July 2011 during PV plant standard working. In
particular two different data sets have been considered; one
is relative to the first 12 days of each month and is used for
the training, while the second is relative to remaining days
and is for the validation of the network. These data sets
are acquired with a significative time lag between them
in order to assure independent data sets. A sample of the
results on training the network on the first data set is
shown in Figure 2, while the behaviour of the network
on the second set (validation) is shown in figure 3. The
red-continuous line is the predicted irradiation, while the
blue-dashed line is the measured one.
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Fig. 2. Predicted (continuous red line) and Measured (blue
dashed line) Irradiation for 5-9 May 2011
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Fig. 3. Predicted (continuous red line) and Measured (blue
dashed line) Irradiation for 20-23 May 2011

Using a simple PV plant model to estimate the power
production, as described in Gonzlez-Longatt (2005), the
hourly irradiation prediction can be used to generate the
desired power reference. The input parameters of the PV
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model are the irradiation (forecasted with the RBFN) and
the module temperature; an approximate expression for
calculating the cell temperature is given by (Ross (1980)):
(NOCT —20)Irr 5)

800

Tcell = Taz’r +

where T, is the cell temperature, Ty;, the air temper-
ature provided by weather forecasts, Irr is the forecasted
irradiation in [W/m?] and NOCT is the Nominal Operat-
ing Cell Temperature, a specif parameter for each kind of
PV module (see Table 5).

5. IMPLEMENTATION SETTING

The proposed improved PID scheme has been imple-
mented to schedule the power feeding of one of the PV
plants of the italian company Energy Resouces, in Jesi
(AN), Ttaly. The RBF Neural Network forecast has been
implemented to predict energy production of the same
plant. The experimental setup is shown in fig. 1. It is
a combination of hardware and software and includes
nine solar inverters (8 of them connected to Renergies
solar panel and the last to the battery pack), a lithium
battery pack, a Battery Management System (BMS) and
a software platform to develop forecast and control the
feeding of produced power. All communication between
software and hardware is done through TCP/IP protocol,
using serial to TCP/IP conveters and connecting them to
a server, in which are located the softwares to manage
the whole system. For what regards the tuning of PID
parameters has been chosen the Tyreus Luyben tecnique
(see Tyreus et al. (1992)). Different tuning techniques, as
described in Astrom et al. (1995) and Skogestad (2001),
have been tested without significative improvements of
the performance. The adopted solution (giving a different
setpoint every 60 s) is useful to limitate the cycles of
charge/discharge (DOD) of the battery but at the same
time introduces an error on the hourly energy provided to
the power line of about 1/60 of the hourly energy reference.
It’s possible to use this solution because the law proposal,
discussed in section 1 admitted an error of maximum 10%
on the effective hourly energy provided. In this section, the
plant structure, the experimental setup and the results are
discussed.

5.1 FExperimental Setup

Experimental tests have been performed on a PV plant
composed by 8 strings of Renergies 220P /220 polysilicon
panels (Renergies website (2011)). Each string is con-
nected to a SMA Sunny Boy 1700IT solar inverter (SMA
website (2011)). A lithium battery pack is composed by
the series of two sub-module with 80 ThunderSky mod-
ules 40 Ah, a Battery Management System (BMS) and a
battery charger for each module (Winston Battery website
(2011)). A solar inverter (model SIAC soleil 10Kw) is con-
nected to this pack (Siel website (2011)). The parameters
of the system are listed in table 2 , 3, 4 and 5.

5.2 Experimental Results

Figs. 4 and 5 show the performance of the improved
supervised PID and a PID with the same parameters
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Table 2. Technical Data Inverter Sunny Boy
1700IT

Input Data Output Data
Max DC Pow 1850 W Nominal AC Pow 1550 W
Max Efficiency 0.935 Max AC Pow 1.7 KW
Max Current 12.6 A Max Current 8.6 A

Table 3. Technical Data Inverter Siac Soleil 10

Input Data Output Data
Recom DC Pow 8 —12 KW Max AC Volt 400 V
DC Volt MPPT  139-320 V Max AC Pow 9 KW
Max Current 29 A Max Efficiency 0.93
Table 4. Battery Pack Specifications
Max Mod V 300 V Max Charge 1 25 A
Min Mod V 200 V Max Discharge 1 40 A
Mod Capacity 10 Ah  Life Cycles (80% DOD) 3000

Table 5. Technical Data Renergies 220P /220

Max Pow 220 W Coeff Pmax/T  —0.43 %/°C
Isc 8.5 A Coeff Isc/T 4.00 mA/°C
Voc 36.6 V Coeff Voc/T —126 mV/°C

Max Pow V. 28.11 V Max Pow I 7.87 A

but without improvements and supervision. In particular,
during the transient caused by changes in the references,
the improved PID (Figs. 4 and 5 - dashed black line) show
a better tracking performance, moreover on the second
step setpoint change, with respect to the standard PID
(Figs. 4 and 5 - blue line). A sample of the behaviour of
the discharge PID (related to the inverter) is shown in
figure 4 while the charge PID is shown in figure 5. The
setpoint, computed by supervisor has two step variations
(at time 0 and 120), and it’s represented with red dotted
line. Notice that, before the first step setpoint change (at
time 0) the inverter and battery charger are not generating
(or absorbing) power.
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Fig. 4. Performance of the Discharge PID controller

Specifications on set-points following include requirements
on rise time, settling time and overshoot for step changes in
setpoint. With reference to the first setpoint step change,
these parameters are reported in the Table 6 for the
improved PID controllers and in 7 for the standard one.
Another performance index, the Integral of absolute error
(TAE, calculated for the first step) is presented.

A sample of the system’s behaviour is shown in figure 6a.
Datas refers to the period 24-27 august, during standard
working of the system. Production forecasted is repre-
sented with red continuous line, while power produced
by the PV plant with blue dotted line. In figure 6b it’s
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Fig. 5. Performance of the Charge PID controller

Table 6. Performance of improved PID con-

trollers
Rise Time  Settling Time  Overshoot ITAE
Discharge 4.6 s 8.2s 7.2% 1308
Charge 32s 7.1s 3.7% 1544
Table 7. Performance of standard PID con-
trollers
Rise Time  Settling Time  Overshoot IAE
Discharge 4.6 s 11.2's 13.2% 1450
Charge 32s 11.1s 9.7% 1636

reported the SOC of the battery during the same period.
Notice that night time is not reported in figure (datas from
8.30 p.m. to 6.30 a.m.).
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Fig. 6. a) Production forecasted and measured for 24-27
August, b) Battery SOC during the same period

The hourly Root Mean Square of the Error (RMSE) be-
tween desired power reference (computed by RBF Neural
Network and the PV model, constant in an hour) and total
balance of power feeding the power line (measured each
100 ms) is used as a performance indicator. RMSE% for
an hour (in which Py is a constant) is calculated as follows:

E(K) = P; — Ppy(K) — Pinv(K) + Pcu(K)  (6)

3 E(K)n

RMSE% = B (7)
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While the percentage error is:
2. E(K)/n
Ey=58= (8)

Py

Datas from 1st July to 10th September show an RMSE%
of 7.9%, and an average E% of 5.7%. Those results make
possible the schedulling of PV produced energy with an
hourly error less tha 10% in 67 of the 71 days considered

6. CONCLUDING REMARKS

We have presented an improved PID controller with a
supervisor to provide the power line with a scheduled
profile from PV plant’s production using a simple system
composed by lithium batteries and a solar inverter. A
Neural Network based approach is used to derive hourly
irradiance forecast for the city of Jesi (AN), Italy on the
panel’s plane from daily wheather forecasts as a basis
to predict PV power output. The comparison between
the presented controller and a standard PID with the
same parameters shows an improvement of settling time,
a better overshoot and TAE. The indexes used to evaluate
the performance of the power scheduling are the hourly
percentage RMSE of 7.9% and E% of 5.7%. The main
factor that reduces accuracy of control is, of course, a
sudden changing of the weather, that implies a sudden
variation on the PV production, moreover on what regards
cloudness or cloudless of a sunny or a cloudy day. An
optimization of the capacity of the batteries and a new
control strategy is under development. Furthermore we are
extending the proposed forecasting approach to a bigger
region (the entire Italy) for all panels’ orientation and
tilting.
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