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Abstract: In general, to control industrial processes that show an inverse response output
is difficult. This difficulty arises because achievable performance and robustness levels are
competing factors that the designer has to deal with. In this paper we focus on proportional
integral derivative (PID) control of inverse response processes, in particular with the Direct
Synthesis design for disturbance rejection DS-d tuning method of Chen and Seborg. The
paper presents equations that link the control system design performance parameter (closed-
loop control system speed) with its minimum robustness level, measured with the maximum
sensitivity MS , for the mentioned tuning method. In this way, the proposed result allows to
obtain robust PID control systems with MS ≤ 2 for inverse response processes. The examples
show the effectiveness of the proposed design parameter lower limit estimation for the DS-d
tuning method.
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1. INTRODUCTION

Inverse response processes originated by two parallel com-
peting dynamics are present in several industrial and
chemical systems, such as boilers and chemical reactors
(Marlin, 2000). These processes present serious challenges
for control design due to these competing dynamics and
impose fundamental limitations to the performance and
robustness attainable levels (Skogestad and Postlethwaite,
1996).

Proportional integral derivative (PID) control of inverse
response processes have received attention regarding con-
trol structures such as the internal model control (IMC)
(Morari and Zafirou, 1990) and PID parameters tuning
(Luyben, 2003). Analytical IMC-based tuning of PI/PID
controllers for inverse response controlled processes are
presented in Chen et al. (2006); Chien et al. (2003); Scali
and Rachid (1998). All these methods included one design
parameter, normally denoted as λ (the IMC-controller
filter time constant), that is selected using only perfor-
mance considerations, although it also affects the control
systems relative stability (its robustness to changes in the
controlled process characteristics).

Robustness is an important attribute for control systems,
because the design procedures are usually based on the
use of low-order linear models identified at the control

system operation point. Due to the non-linearities of most
of the industrial processes, it is necessary to consider the
expected changes in the process characteristics assuming
certain relative stability margins, or robustness require-
ments, for the control system. Therefore, the design of
the closed-loop control system must take into account the
system performance and its robustness considering the
well-known trade-off between them.

In particular we consider the Direct Synthesis design for
disturbance rejection DS-d tuning method of Chen and
Seborg (2002). This method uses a regulatory control
third-order target closed-loop transfer function with only
one tuning parameter, τc, defined as the ratio of the closed-
loop system time constant Tc to the controlled process
main time constant T , (τc

.
= Tc/T ). For the cited DS-d

tuning method, there is no criteria for the selection of the
performance design parameter τc that provides a suitable
robustness level.

In this paper we propose an estimation of the minimum
τc value (maximum speed) that limits the control system
maximum sensitivity to MS ≤ 2. This estimation is given
as a function of the plant model dimensionless parameters
a and b, the ratio of the two time constants and the relative
position of the right half plane zero, respectively. In this
way, the designer can determine what is the maximum
performance level τc attainable with the particular inverse
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Figure 1. Feedback Control System.

response process at hand with a robustness limit MS ≤ 2.
This is a mandatory step to do before attempting any PID
tuning. Otherwise, non-robust tunings can be selected.

The paper is organized as follows. After the problem for-
mulation in Section 2, the paper main result is established
in Section 3, in which the equations that relate the perfor-
mance level τc with the robustness margin MS are derived
as functions of just two parameters a and b. In Section
4 it is shown the result applicability on the PID tuning
for a continuous stirred tank reactor (CSTR). The paper
finishes with some conclusions.

2. PROBLEM FORMULATION

Consider the closed-loop control block diagram in Fig.
1, where P (s) is the inverse response controlled process
model transfer function and C(s) is the controller transfer
function.

In this system, the variables of interest can be described
as follows:

• d(s) is the load-disturbance input,
• r(s) is the set-point for the process output,
• u(s) is the controller output signal,
• y(s) is the process output (controlled variable).

Also, the inverse response controlled process is represented
by the second-order plus a right-half-plane-zero model
given by

P (s) =
K(−bTs+ 1)

(Ts+ 1)(aTs+ 1)
, (1)

were K, T , a and b are the process gain, the main time
constant, the ratio of the two time constants and the
relative position of the right half plane zero, respectively.

We consider a standard proportional integral derivative
(PID) controller (Åström and Hägglund, 1995) given by

C(s) = Kp

(

1 +
1

Tis
+

Tds
Td

N s+ 1

)

, (2)

where Kp is the proportional gain, Ti is the integral time
constant, and Td is the derivative time constant. The
derivative filter constant N usually takes values within the
range from 5 to 20 (Åström and Hägglund, 2006; Visioli,
2006). Without the loss of generality, N = 10 is used (Chen
and Seborg, 2002).

The PID controller is tuned using the DS-d method (Chen
and Seborg, 2002). This is a direct synthesis design for
disturbance rejection, regulatory control, with a third-
order target closed-loop transfer function given by

Myd(s) =
Ti/Kps(−bTs+ 1)

(τcTs+ 1)3
, (3)

where the design parameter τc is the ratio of the closed-
loop system time constant Tc (Tc = τcT ) to the controlled
process main time constant T . Normalized equations of
the DS-d tuning are shown in the Appendix A.

3. ROBUSTNESS ANALYSIS

The design parameter τc selection has a direct influence
over the control system performance (the closed-loop sys-
tem speed) and its robustness (the control system sensi-
tivity to changes in the controlled process characteristics).
Then its selection must take into account the existing
performance/robustness trade-off.

The closed-loop control system robustness (relative stabil-
ity) is measured using the maximum sensitivity MS , which
is defined as follows:

MS
.
= max

ω
|S(jω)| = max

ω

∣

∣

∣

∣

1

1 + C(jω)P (jω)

∣

∣

∣

∣

, (4)

Recommended values for MS are typically within the range
from 1.4 to 2.0 (Åström and Hägglund, 2006).

The use of the maximum sensitivity as a robustness
measure, has the advantage that lower bounds to the
gain margin, Am, and phase margin, φm, can be assured
according to (Åström and Hägglund, 2006)

Am >
MS

MS − 1
, (5)

φm > 2 sin−1

(

1

2MS

)

. (6)

Therefore, to assure MS = 2.0 provides what is commonly
considered the minimum robustness requirement (that
translates to Am > 2 and φm > 29o).

In this sense, (4) is evaluated in order to determine the
design parameter, τc, lower limit to obtain the standard
minimum robustness level of MS = 2.0.

For the analysis, the controlled process model time con-
stants ratio a is selected within the range from 0.2 to
1.0 to include controlled processes with nearly first-order,
over damped second-order, and dual-pole dynamics. The
relative position of the right half plane zero b is taken
within the range from 0.25 to 4.0 due to the limitations to
obtain a robust control system as will be showed bellow.

Fig. 2 shows the lower limits for the design parameter (for
five a ratios), to achieve a system robustness higher than
the usual minimum (MS ≤ 2.0) with PID controllers tuned
with the DS-d method.

As it can be seen, model parameters a and b, affect the
control system performance/robustness relation. For any
model time constants ratio a, if the right half plane zero
moves towards the origin (i.e. b increases), it is necessary
to decrease the closed-loop speed (increasing the design
parameter τc). This will maintain the system robustness
above the usual minimum level (MS ≤ 2.0).

For equal b values, the maximum allowed speed to achieve
a robust control system, is lower for systems with similar
time constants (a ≈ 1.0), than for systems with very
different time constants (low a). It is also noted that
for some combinations of system parameters (a, b), it is
not possible to achieve a robust control system. For the
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Figure 2. Design Parameter τc Lower Limits for MS ≤ 2.0.

Table 1. Constants ai for (7)

a bmax a0 a1 a2 a3

0.20 1.25 0.2212 0.5386 -0.1377 0.04800

0.40 2.50 0.3263 0.6437 -0.2792 0.06578

0.60 3.25 0.3947 0.7064 -0.2804 0.05164

0.80 3.75 0.4388 0.7648 -0.2795 0.04405

1.0 4.0 0.4659 0.8250 -0.2850 0.40860

considered a values in the analysis, the proximity of the
zero position to the origin is limited by the bmax value, as
stated in Table 1.

Therefore, using the information in Fig. 2, it is possible
to include a minimum system robustness level into the
design stage, estimating a recommended maximum speed
(τcmin). Then, for the model time constants ratios a in the
analysis, by using the MATLAB R©Curve Fitting Toolbox
a set of equations of the form

τcmin = a0 + a1b+ a2b
2 + a3b

3, (7)

is obtained, where the ai constants are listed in Table 1.

Equations (7) allow to select the performance design
parameter such that τc ≥ τcmin to obtain control systems
with a robustness MS ≤ 2.0. In case that the model time
constants ratio a does not coincide with the values in Table
1 an interpolation is necessary using the equations for the
two nearest a values.

It can also be seen from Fig. 2, that the recommended
lower limit for the design parameter should be roughly
bounded between the two dotted right lines given by

τ lc = 0.2 + 0.40b, (8)

τhc = 0.8 + 0.25b, (9)

where τ lc and τhc state for the low and high limits of τcmin,
respectively.

Table 2. Example 1 - Process Model Parame-
ters

α K T a b

0.5 1.0 1.368 0.515 0.371

1.0 1.0 1.345 0.557 0.759

2.0 1.0 1.309 0.565 1.564

3.0 1.0 1.285 0.557 2.387

Table 3. Example 1 - DS-d Tuning PID Pa-
rameters and Robustness

α τcmin τc Kp Ti Td M
r
S

0.5 0.576 0.60 1.879 1.938 0.448 1.969

1.0 0.749 0.80 0.929 2.047 0.465 1.929

2.0 1.051 1.10 0.404 1.833 0.374 1.739

3.0 1.352 1.40 0.209 1.464 0.136 1.809

Then, a general approximated estimation of τcmin for any
a and b values within the studied range, can be obtained
assuming that for each b value the τcmin corresponding to
a ∈ {0.20, 0.40, 0.60, 0.80, 1.0} are uniformly distributed
between these two lines, and given by

τcmin = 0.05 + 0.75a+ 0.475b− 0.1875ab, (10)
where the parameters must satisfy the following relation

b ≤ −0.2 + 8.2a− 2a2, (11)
imposed by the right half plane zero position limit bmax

stated in Table 1.

Equation (10) gives a less precise estimation of the design
parameter lower limit τcmin than (7) but does not require
any addition work for the cases when the model time
constants ratio a is not one of the values listed in Table 1.

Therefore, for an inverse response controlled process (1),
it is possible to design a robust regulatory control system
with a PID controller (2) using the DS-d normalized
tuning method (18) to (20) and following the proposed
recommendation for τcmin (7) or (10), selecting the design
parameter as τc ≥ τcmin, in order to achieve a robust
control system with MS ≤ 2.0.

4. EXAMPLES

4.1 Example 1

Consider the following second order inverse response con-
trolled process

P1(s) =
1− αs

(s+ 1)2
, (12)

with α ∈ {0.5, 1.0, 2.0, 3.0} that is a variation of the
inverse response benchmark plant proposed in Åström
and Hägglund (2000). Using the inverse response model
identification procedure proposed in Balaguer et al. (2011)
and summarized in Appendix B, the corresponding models
were obtained whose parameters are show in Table 2.

Models information of Table 2 were used to obtain the PID
parameters using (18) to (20) where the corresponding
design parameter was selected with (10).

The DS-d tuning controller parameters for the selected
design parameter τc are shown in Table 3 along with the
achieved robustness (Mr

S).

As it can be seen in Table 3, following the proposed
recommendation to obtain a robust control system (10),
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Figure 3. Example 1 - Control System Responses for P1

selecting the design parameter τc ≥ τcmin, it is possible
to get good values for MS . Therefore, achieving a robust
control system (MS ≤ 2.0).

The control system response to a 10% set-point step
change followed by a 10% load-disturbance step of such
systems are shown in Fig. 3, for each case of α. It was
supposed that at its normal operation point the system
output y is at 70% of their normal operation range.

4.2 Example 2

In order to add completeness to the analysis, a case-
study example is provided. We consider the isothermal
continuous stirred tank reactor (CSTR), as the one in
Fig. 4, where the isothermal series/parallel Van de Vusse
reaction (Kravaris and Daoutidis, 1990; Van de Vusse,
1964) is taking place. The reaction can be described by
the following scheme

A
k1−→ B

k2−→ C, (13)

2A
k3−→ D.

Doing a mass balance, the system can be described by the
following model

dCA(t)

dt
=

Fr(t)

V
[CAi − CA(t)]− k1CA(t)− k3C

2
A(t),

dCB(t)

dt
= −

Fr(t)

V
CB(t) + k1CA(t)− k2CB(t), (14)

where Fr is the feed flow rate of product A, V is the reactor
volume which is kept constant during the operation, CA

and CB are the reactant concentrations in the reactor, and

Figure 4. Example 2 - CSTR System
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Figure 5. Example 2 - Steady-State Characterization for
the Reactor

ki (i = 1, 2, 3) are the reaction rate constants for the three
reactions.

In this case, the variables of interest are: the concentration
of B in the reactor (CB as the controlled variable), the
flow through the reactor (Fr as the manipulated variable),
and the concentration CAi of A in the feed flow (whose
variation can be considered as the disturbance). The
kinetic parameters are chosen to be k1 = 5/6 min−1,
k2 = 5/3 min−1, and k3 = 1/6 l · mol−1 · min−1. Also,
is assumed that the nominal concentration of A in the
feed (CAi) is 10 mol · l−1 and the volume V = 700 l.

Using (14) and the parameters values, the characterization
of the steady-state for the process can be obtained as it is
shown in Fig. 5, for three concentrations of CAi, where is
easy to see the non-linearity of the system.

Initially, the system is at steady-state (therefore at the
operational point) with CAo = 2.9175 mol · l−1 and
CBo = 1.10 mol · l−1. From this, it can be selected the
measurement range for CB from 0 to 1.5714 mol · l−1 and
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Figure 6. Example 2 - Steady-State Characterization for
the Actuator-Process-Sensor Set

the capacity for the control valve with a maximum flow of
634.1719 l · min−1 (variation range of the flow from 0 to
634.1719 l ·min−1) (Arrieta et al., 2008). The signals (y,
u, r) will be in percentage (0 to 100%).

The sensor-transmitter element takes the form

y(t)% =

(

100

1.5714

)

CB(t), (15)

and the control valve with a linear flow characteristic,

Fr(t) =

(

634.1719

100

)

u(t)%. (16)

Fig. 6 shows the steady-state characterization, taking into
account the instruments represented by (15) and (16). This
is the called actuator-process-sensor set and from this is
clearly that for the selected steady-state, ro = 70% and
uo = 60%.

It is assumed that changes in the set-point would be not
bigger than 10% and the possible disturbance in CAi, can
variate around ±10%.

Using the identification methodology in Appendix B (Bal-
aguer et al., 2011), a linear model was obtained and given
by

P2(s) ≈ P̄2(s) =
0.3199(−0.3520s+ 1)

(0.5619s+ 1)(0.3086s+ 1)
. (17)

Figure 7 shows the process and the identified model (17)
outputs for a step change in the process input (u(t)). It is
possible to see that the identification procedure has a very
good accuracy.

From (17) parameters of the inverse response model (1)
are: K = 0.3199, T = 0.5619, a = 0.5492 and b = 0.6264.

Since model parameters, a and b, satisfy (11), using (10)
the design parameter for tuning the PID controller can be
selected as τc = 0.75 ≥ τcmin = 0.7.

Controller parameters obtained with (18) to (20) for τc =
0.75 are: Kp = 3.467, Ti = 0.850 and Td = 0.194; and the
robustness of the resulting control system is Mr

S = 1.928.

The control system responses to step-changes in the set-
point and the disturbance are shown in Fig. 8
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Figure 7. Example 2 - Reaction Curve for Process and
Model
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Figure 8. Example 2 - Control System Responses to Step-
Changes in the Set-Point and the Disturbance

5. CONCLUSIONS

In this paper the relation of the closed-loop PID control
system performance τc with the maximum sensitivity MS

was analyzed for the DS-d tuning method of Chen and
Seborg (2002). The result shows in a quantitative way
that regarding the inverse response process characteristics,
defined by the model dimensionless numbers a and b,
there are some performance levels that are not robustly
attainable.

Its usefulness in control practice has been shown by
means of the PID tuning of some examples, including a
continuous stirred tank reactor (CSTR).

The proposed selection criteria for the design parameter τc
allows the designer to obtain robust PID control systems
with MS ≤ 2.0 for inverse response processes using the
DS-d tuning rule.
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APPENDICES

A. DS-d tuning rule

The tuning equations from Chen and Seborg (2002) in a
normalized form for controller (2) with a model (1) are:

κp
.
= KpK =

−3τ2c b+ [a+ (1 + a)b](3τc + b)− τ3c
(τc + b)3

(18)

τi
.
=

Ti

T
=

−3τ2c b+ [a+ (1 + a)b](3τc + b)− τ3c
a+ (1 + a+ b)b

(19)

τd
.
=

Td

T
=

(−b− 1− a)τ3c + 3τ2c a+ ab(3τc + b)

−3τ2c b+ [a+ (1 + a)b](3τc + b)− τ3c
(20)

with τc as a design parameter.

B. Identification procedure

Simple algorithms for identification of inverse response
models from step response are difficult to obtain because
analytically it is required the solution of a system of
coupled nonlinear equations. In this Appendix we sum-
marize the simple identification procedure for second order
inverse response processes based on the plant step response
presented in Balaguer et al. (2011).
In order to identify the parameters of model (1) following
information take from Fig. 9 is needed: the input step
change ∆u, the output total change ∆y, the inverse re-
sponse minimum point (yp in %, tp), and the times take
by the output to reach the 47% (t47) and the 90% (t90) of
its total change.
Model identification equations are (Balaguer et al., 2011):

K =
∆y

∆u
,

T = 0.60(t90 − t47), (21)

b = 1−
1− yp/∆y

e−tp/T
,

a =
t47 − 0.7538 + 0.6262b+ 0.0696b2

0.9275− 0.1794b− 0.0161b2
.
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Figure 9. Identification from the step response

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WeC1.5




