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Abstract: In this paper analytical expressions for PID-controllers settings for electromechanical
motion systems are presented. It will be shown that by an adequate frequency domain oriented
parametrization, the parameters of a PID-controller are analytically dependent on one variable
only, the cross-over frequency of the open loop transfer function. Analytical expressions are
derived that relate the cross-over frequency clearly to the performance criteria for the closed
loop system. In this paper the latter is shown in detail for servo problems. The effectiveness of
the outlined approach is demonstrated by experimental results that were obtained from a two
DOF tilting mirror system.
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1. INTRODUCTION

The use of decentralized ”classical” PID-control in elec-
tro mechanical systems, or mechatronic systems, is still
widespread as it is a key component of industrial control
due to its essential functionality and structural simplicity
(Astrom and Hagglund (2001)). The literature on PID
control design and tuning is quite extensive, see for an
overview O’Dwyer (2009); Ang et al. (2005); Cominos and
Munro (2002). The majority of papers is on tuning for pro-
cess control applications. Only a few papers are on analyt-
ical frequency domain methods. As PID-control is strongly
related to lead-lag compensation we refer to Wakeland
(1976); Mitchell (1977); Wang (2003); Yeung et al. (1998);
O’Dwyer (2007) for existing analytical frequency domain
design procedures for lead-lag compensators.

However, none of the referred authors use the cross-over
frequency 1) as the key parameter to tune or to set. Impor-
tant in general control system design are performance and
closed loop stability. For the design of electromechanical
motion systems, performance is a low frequency issue and
closed loop stability is a high frequency issue. This is
commonly known as the mixed sensitivity problem. In
this paper an approach is presented for the performance
part of this problem. The approach described is original
although it has some similarity with the two-step proce-
dure described by Skogestad (2003) for process control.
The approach is:

(1) Obtain a second order plant model and controller
parametrization adequate for performance analysis.

(2) Determine the minimum cross-over frequency and
PID-settings from the performance criteria.

In step 1 it is assumed that coupled Multi input Multi
output (MiMo) systems are decoupled at some critical fre-

1) for the openloop transfer L(s) yields at cross-over frequency ,
|L(jωc)| = 1

quencies using a (static) decoupling or interaction reducing
strategy (Owens (1978); Boerlage et al. (2005)). Then one
dimensional lumped parameter models representing the
dominant system dynamics are adequate to support step
2, the derivation of symbolic expressions between per-
formance parameters and necessary cross-over frequency
of the open-loop transfer function L(s) = K(s) · G0(s),
where G0(s) is the nominal model transfer function of
the plant and K(s) the transfer function of the controller.
This derivation of symbolic expressions, to our opinion, is
new. In step 2 high frequency dynamics due to parasitic
modes are neglected. However, robust stability against
these higher order dynamics restrict the cross-over fre-
quency from above. The discussion on cross-over frequency
and robust stability is considered to be outside the scope
of this paper.

The background for the steps are described in the following
sections, which are organized as follows. In section 2, the
necessary theoretical considerations to be used in the steps
1 and 2 are presented. A convenient parametrization of
PID controllers will be presented based on the analytical
frequency domain controller design procedures. Based on
this parametrization it will be shown that performance
requirements can be easily translated into a cross-over
frequency specification given a general model of electrical
mechanical systems. The approach presented is appropri-
ate for motion systems subjected to a polynomial reference
trajectory (Lambrechts et al. (2005)). Remark, that com-
mon considerations on performance in control engineering
textbooks and in a large part of the PID-tuning publica-
tions (for references see O’Dwyer (2009)) are based on the
step response. However, in practical motion systems a step
is never applied as reference.

In section 3 the presented approach is demonstrated for
a tilting mirror system. The determination of necessary
cross-over frequency and PID-controller settings are out-
lined. Experimental results are obtained from a test set-
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up and show the effectiveness of the outlined approach.
Section 4 summarizes the conclusions.

2. FORMULATION OF ANALYTICAL EXPRESSIONS

In the following subsections general model derivation,
PID-controller parametrization and the analytical expres-
sions between performance parameters and cross-over fre-
quency will be addressed. It is assumed that performance
is a low-frequency issue.

2.1 Model derivation

Decoupling The controller design for performance ap-
proach to be described is based on Single input Single
output (SiSo) systems. It is also adequate for decoupled
MiMo systems. Often MiMo systems suffer from interac-
tion between inputs and outputs of the plant. In order
to make the ith output respond to the ith input alone
and hence to reduce interaction it is assumed in the fol-
lowing that MiMo systems are decoupled by decoupling
transformations. The decoupling transformations reduce
the problem to the design of a number of non-interacting
control loops.

First, the decoupling transformation matrices (A,B) for
the coupled MiMO system G(s) are to be obtained, result-
ing in the diagonal plant Gd(s) ”seen” by the controller:

Gd(s) = BG(s)A, (1)

of which the entries are SiSo transfer functions. In sec-
tion 3 we apply a practically powerful static decoupling
method. We use the decoupling strategy as described by
Owens (Owens (1978)) that uses static real transformation
matrices, which are known as the dyadic transfer function
matrices. Second, the so-called decentralized controllers
for the decoupled system have to be designed. Each of
these controllers can be designed using methods for SiSo
systems. For this purpose the SiSo plant is described next.

F

x

m

k

d

Fig. 1. General nominal model of motion system used for
performance analyses/synthesis

The SiSo plant model Controlled electro-mechanical mo-
tion systems are often actuated by inductive actuators
applied with either voltage- or current-mode power am-
plification. For control synthesis, considering performance,
the mass of the subsystem to move is assumed rigid and
a one dimensional model as shown in figure 1 will be
adequate. This model is called ”the nominal model” and
is used for performance synthesis. In figure 1 k is the
stiffness in actuated direction, m is the mass to move, F
is the force supplied by the actuator and d is the damping
constant. From figure 1 the basic transfer function Gf (s)
between position x of the mass and actuator-force F can
be obtained:

Gf (s) =
x(s)

F (s)
=

1

ms2 + ds+ k
(2)

In case of voltage control the force

F =
U · km

R
(3)

where U is the applied voltage by the power amplifier, km
is the motor constant, and R the resistance of the coil. In
that case:

d =
k2m
R

(4)

is the damping due to back-emf. Hence, in the case of
voltage control (2) becomes:

x(s)

U(s)
= Gu(s) =

km

R·m

s2 +
k2
m

R·m
s+ k

m

(5)

In current mode control, F = km · i and the assumption
d = 0 is made. The current applied by the power amplifier
is denoted by i and (2) becomes:

x(s)

i(s)
= Gi(s) =

km

m

s2 + k
m

(6)

In case the mechanical subsystem does not have stiffness
in the actuated direction k = 0. In order to prevent
hihg actuator power, the stiffness k is required to be low.
Therefore, the (undamped) resonance frequency in (5) and

(6) ω1 =
√

k
m

is low or zero. Typically, this resonance

frequency is within the control bandwith. Consequently,
near the cross-over frequency we can consider the high
frequency (ω > ω1) approximation of (5) and (6) :

x(s)

U(s)
= Gu,HF (s) =

cu
ms2

∀ ω > ω1 (7)

where in (7) cu = km/R. In the sequel we will use meq

for either
m

cu
or

m

km
, depending on the type of amplifier

applied. So, both for voltage or current control (2) is
written as:

x(s)

inp(s)
= Gnom(s) =

1
meq

s2 + d
m
s+ k

m

(8)

The high frequency (HF) approximation of (8) becomes:

x(s)

inp(s)
= GHF (s) =

1

meqs2
∀ ω > ω1 (9)

2.2 PID controllers

The usual parallel form of an industrial PID-controller is:

K(s) = Kp +
Ki

s
+

Kds

sτ + 1
(10)

where Kp, Ki, and Kd are the proportional, integral and
derivative gains respectively. τ is an a priori selected time-
constant which limits the high frequency gain of the PID-
controller. For the purpose of frequency domain loop-
shaping (10) is rewritten in the series form

K(s) = kp ·
(sτz + 1) (sτi + 1)

sτi (sτp + 1)
(11)

where the parameters kp, τz , τi and τp are uniquely related
to Kp, Ki, Kd and τ (Grassi et al. (2001)). Characteristic
for the PID-controller is its high gain at low-frequencies.
Figure 2 shows the bode-diagram of this PID-controller.
The first corner-point 2) is determined by the transfer-
zero in 1

τi
, the second corner-point is determined by the

2) The point where the asymptote is turning into a line with different
angle. The corresponding frequency is called corner-frequency.
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Fig. 2. Bode diagram of PID-controller

transfer-zero in 1
τz
. Finally, the gain at high frequency

is limited by the corner-point due to the pole in 1
τp
.

The corner-frequency 1
τz

indicates where the derivative
action is started. Since the phase-lag of the I-action should
not interfere with phase-lead of the derivative action, the
corner-frequency 1

τi
, indicating the stop of the integral-

action, should be lower in frequency than the start of
the derivative action. Therefore, it is chosen τi = β · τz ,
β > 1. Due to the zero of the transfer in 1

τz
, the controller

provides phase-lead in a certain frequency range, as shown
in figure 2. Typically, the PID-controller is used to increase
the cross-over frequency and to provide sufficient phase-
margin at the cross-over frequency.

At first analytical expressions for the parameters of the
PID-controller as a function of the cross-over frequency
ωc, are derived. As outlined τi = β · τz , and furthermore
τp in (11) is replaced by α · τz. The amount of phase-lead
is determined by α. Usually, this parameter is set between
0.1 to 0.3 to provide a desired amount of phase lead.

From figure 2 we observe that the position of the second
corner-point of the asymptote is determined by the loca-
tion of the zero at 1

τz
. The position of the high frequency

corner-point is determined by the location of the pole at
1
τp
. The maximum phase-lead is obtained at the frequency

ωphm, which is the geometrical mean of the corner points:

ωphm = log−1
log 1

τz
+ log 1

τp

2
=

√
1

τz · τp
(12)

By using the asymptotes the gain of the PID-controller at
the frequency where the maximum phase-lead is obtained
reads as:

|K(jωphm) | = kp

(√
1

α

)
(13)

The maximum phase-lead is at ω = ωphm and the phase
of the plant at frequencies well above ω1 is −180◦. As a
consequence, to use the phase-lead of the PID-controller
most effectively we should design it in such a way that
ωphm is located at the desired cross-over frequency:

ωc = ωphm (14)

At the cross-over frequency |KGHF | = 1, so

|K ·GHF |ωc
=

∣∣∣∣
K(jωc)

meq · (jωc)2

∣∣∣∣ =
kp

√
1
α

meqω2
c

(15)

Using (12) (14) and (15) the following relations between
τz, τi, τp, kp and ωc can then be obtained:

τz =

√
1
α

ωc

, τi = β · τz

τp =
1

ωc ·
√

1
α

, kp =
meqω

2
c√

1
α

(16)

Eq. (16) gives the analytical expression for the param-
eters of a PID-controller as a function of the cross-over
frequency. In practice the PID-controller is extended with
a low-pass filter to prevent amplification of noise and
possibly with notch filters to cope with parasitic dynamics.

r
yGK

+

-

Controller Proces

+
+

d
e

Fig. 3. Block-diagram of controlled system

2.3 Performance requirement and cross-over frequency

Figure 3 shows the block-diagram of the controlled system,
where reference r and disturbance d are inputs and the
servo-error e is an output. The closed-loop transfer S(s)
between r and e and between d and e (when omitting
the minus sign), is called Sensitivity function and can be
written as:

S(s) =
s(sτp + 1)(s2 + d

m
s+ k

m
)

s(sτp + 1)(s2 + d
m
s+ k

m
) +

kp

meqτi
(sτz + 1)(sτi + 1)

(17)
where we have substituted for K(s) the transfer function
of the controller (11) and for G(s) the transfer function of
the plant (8).

In the following we will address the dynamic system
behavior of these systems in case the reference is described
in time as a third degree polynomial. The reference (r in
figure 3) is described by:

r(t) =
16

3
· hm

( t

tm

)3
, 0 ≤ t ≤ tm

4

r(t) =
32hm

t3m

(
tmt2

4
− t3

6
− t2mt

16
+

t3m
192

)
,
tm
4

< t ≤ 3tm
4

r(t) =
32hm

t3m

(−tmt2

2
+

t3

6
+

t2mt

2
− 13t3m

96

)
,
3tm
4

< t ≤ tm

r(t) = hm, t > tm
(18)

where hm is the total displacement of the trajectory, or
set-point and tm is the time available for the trajectory, or
setup-time.

A prediction of the error e can be obtained from the
fact that the error behavior is the result of filtering
the reference r by S(s). The static gain of the filter S
scales the (dominant) components of the reference into
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the servo-error and the filter introduces delay. Second, the
components of the reference which play a dominant role in
the error behavior must be identified. The power density
of the reference will have a peak at

2π

tm
= ωd. (19)

The power density will be significant for frequencies ω <
ωd, but will decrease rapidly for ω > ωd. For sufficient
fast tracking of the reference we should assure ωd << ωc

and hence the reference is considered as a low frequency
disturbance on the system. Therefore, the low-frequency
behavior of S can be considered. For that reason we can
simplify S(s) to the so called low frequency equivalent
SLF (s) where only components with a frequency content
smaller than the cross-over frequency ωc are taken into
account. For the fourth order denominator of S(s) the fol-
lowing can be stated. S(s) will have a complex conjugated
pole-pair with the frequency of the cross-over frequency ωc.
These are not of interest when considering low frequency
behavior of S. Also there will be a relatively high frequency
real valued pole around − 1

τp
= −

√
1/α · ωc, which is

neither of interest. As a consequence, there is one real
valued pole which location needs attention. It is expected
that this pole is in the low frequency region. For that
reason the denominator of S(s) is simplified to be of first
order in order to approximate the location of the pole.

Considering simplification of the numerator of S(s) the
following can be observed. S(s) will have zeros correspond-
ing with the poles of the plant and the controller. So,
the zero in 0 and the zeros corresponding with the low
frequency plant poles need to be taken into account. The
high frequency zero due to the controller pole in − 1

τp
is

neglected. Hence, (17) can be approximated by:

SLF =
s3 + d

m
s2 + k

m
s

(
k
m

+ (τi + τz) ·
kp

meq · τi
)
s+

kp
meq · τi

. (20)

Substitution of k
m

= ω2
1 and (16) into (21) results in:

SLF =
s3 + d

m
s2 + ω2

1s(
ω2
1 + (1 + 1

β
)
√
αω2

c

)
s+ 1

β
αω3

c

. (21)

Expression (21) can be used to predict the maximum servo
error, the set-point error and the amount of disturbance
rejection in relation with a required cross-over frequency.

Prediction of the maximum servo error as a function of ωc

In order to predict the maximum servo error, the static
gain or scaling factor of |S(0)| must be derived, the delay
is of no concern. Therefore, the denominator of (21) can be
further simplified to the zero-order approximation. Then,
the low frequency approximation of the servo-error eLF (s)
is written in the Laplace domain as:

eLF (s) =
s3 + d

m
s2 + ω2

1s
1
β
αω3

c

· r(s) (22)

and in the time domain as:

eLF (t) = kj ·
...
r (t) + ka · r̈(t) + kv · ṙ(t) (23)

where

kj = β
1

α · ω3
c

, ka = β
d
m

α · ω3
c

, kv = β
ω2
1

α · ω3
c

(24)

As is shown by (23) the low-frequency approximation
of the servo-error eLF will depend on the jerk

...
r (t),

the acceleration r̈(t) and the velocity ṙ(t) profiles of the

reference, the model parameters d, m and ω1 =
√
k/m as

well as on the control parameters which are expressed in
the cross-over frequency ωc and the parameters α and β
using (16).

Figure 4 shows a simulation result of an error response
and the different components of the prediction of the error
using (23) for an example system. As reference a third
degree trajectory is used as described by (18).

0 0.1 0.2 0.3 0.4 0.5
-2

0

2

4

6

8

10
x 10

-6

Servo err

Velocity comp

Predicted err

jerk comp
acc comp

Fig. 4. Simulation results of servo-error and its components
according to (23). Simulation are obtained with plant
(8) parameters: k = 100 N/m, m = 0.0979 kg,
km = 3.2 N/A, R = 10 Ω meq = m/cu. Controller
parameters: ωc = 60 Hz., α = 0.2, β = 2. Reference
parameters: hm = 0.01 m, tm = 0.4 s

The time derivatives of this reference can be computed
easily and their contributions to the servo-error (23) are
shown separately. Some remarks can be made after ob-
serving the servo-error. The maximum of the predicted
servo error arises at ≈ tm

2 . At tm
2 both the jerk

...
r and

the velocity ṙ have their maximum values jmax and vmax

respectively. The simulated servo-error (dashed-line) is
shifted in time compared to the sum of the components
of the prediction (23) (the solid-line). The prediction over-
estimates the maximum of the servo-error only slightly

In case a current amplifier is applied, which is usual, d = 0
and the acceleration-term has zero contribution. In case
a voltage amplifier is used the acceleration has neither a
contribution in the prediction of the maximum servo-error
since r̈( tm2 ) = 0. Apparently, the second term in the error
prediction (23) can be ignored in the estimation of the
maximum error:

eLF (
tm
2
) = β

jmax

α · ω3
c

+ β
ω2
1 · vmax

α · ω3
c

=
2βhm

αω3
c tm

(
− 16

t2m
+ω2

1

)

(25)
In case the stiffness k = 0 or ω1 is small, the jerk-term
dominates in (25). In case ω1 > 4

tm
and taking only the ve-

locity term into account results in a slight over estimation
of the the maximum servo-error . Therefore, two distinct
relations can be derived from (25) for computation of the
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Fig. 5. Geometry of prototype tilting mirror

cross-over frequency in case the maximum servo-error is
specified as eLF (

tm
2 ) = emax, and (18) is used as reference:

0 ≤ ω1 <
4

tm
ωc =

3

√
β · jmax

α · emax

= 3

√
32βhm

αemaxt3m
(26)

ω1 ≥ 4

tm
ωc =

3

√
βω2

1 · vmax

α · emax

=
3

√
2βω2

1hm

αemaxtm
(27)

Often in mechatronic systems a feedforward is added
to increase the performance. This feedforward can easily
be included in the relations between error and reference.
However, this is beyond the scope of this paper.

3. CONTROLLER DESIGN FOR A TILTING
MIRROR SET-UP

A two input two output example from laser surface treat-
ment will be used as a case study. Figure 5 shows a
prototype of a 2 degrees of freedom (DOF) tilting mirror
mechanism. The mirror manipulates the laser spot in a
plane (two degrees of freedom). The prototype consists
of a mirror-plate with a simple mirror mounted on it’s
surface. The mirror plate is suspended by four wire springs.
These wire springs suppress, in principle, 4 of the 6 DOF
of the mirror-plate (Soemers (2009)). The 2 DOF’s left
are rotation around x-axis and y-axis. These rotations
(tilts) will be accomplished by voicecoil motors (VCM’s) as
indicated in figure 5. Counterweights are used to balance
the coil masses of the VCM’s connected to the mirror plate,
with the goal to obtain a symmetric dynamic problem.
Inductive sensors are mounted in order to measure the
mirror-plate displacement.

3.1 Determination of cross-over frequency from performance
requirements

In order to test the above outlined theory, the tilting
mirror mechanism is subjected to a reference trajectory
as described by (18). The trajectory is such that at sensor
1 a displacement of the mirror plate of hm = 0.5 mm is
demanded while sensor 2 should measure zero displace-
ment difference. Remark that this requires actuation of
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Fig. 6. Bode magnitude plot of transfer-matrix, identified
plant (dotted) and decouple identified plant (solid)

both actuators. During this motion the maximum servo-
error is emax = 10µ. The set-up time tm = 0.1 sec.

Obtaining the model Identification techniques (Over-
schee van and de Moor (1996) ) are used in order to obtain
a model from the set-up. For this reason the actuator in-
puts ũ(k) are excited with a white Gaussian noise sequence
and the sensor outputs y(k) are recorded.

To validate the quality of the model, the Variance-
Accounted-For (VAF) Overschee van and de Moor (1996)
measure is used. A 2x2 transfer model of order 16 was
identified, which gave a VAF of 99.67% on the validation
data. Based on this VAF value, it can be stated the model
describes the system well enough. The Bode magnitude
plot of the result of the 2x2 state space obtained by
identification is shown in figure 6.

Next to the identified transfer-matrix the bode-magnitude
results of decoupling or plotted in figure 6. From which one
can conclude that the controller indeed ’sees’ an almost
diagonal plant in the frequency region of interest from
0.1 to 200 Hz. Note that in (1) the static transfer-matrix
B is a rotation of the frame that spans the sensor space
to the frame of the controller space and A is responsible
for rotating the controller space frame to actuator space
frame.

Desired cross-over frequency and controller settings The
bodeplots show that resonance frequencies of the tilt-
modes ω1 are approximately 14.5Hz.. As a consequence
ω1 > 4

tm
and therefore we can use (27) to compute the

desired cross-over frequency. The result is ωc = 70Hz, with
α = 0.2, β = 2. The product of the parameters meq1 · ω2

c

and meq2 ·ω2
c , needed for the proportional gains of the two

controllers according to (16), can be obtained from the
evaluation of the diagonalized plant gains at the desired
cross-over frequency Kg:

meqi · ω2
c = Re(−Kgi,i)

−1 i = 1..2 (28)

Where Re delivers the real parts of the complex values
of K−1

g . The evaluation of an electromechanical plant at
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Fig. 7. Error between reference 1 and sensor-output 1,
black line predicted error epred = kv ṙ(t) according
to (23), with only the velocity part. Grey line is
measured error. Sensor KD2446-5CM res. < 0.5µm.

cross-over frequency usually results in a real matrix, since
the phase at cross-over frequency will be -180 degrees. In
case the phase differs from -180 degrees it is suggested to

use the ALIGN algorithm (MacFarlane and Kouvaritakis
(1977)) to obtain the best real-approximation of the com-
plex matrix. According to (16) all parameters of the two
PID-controllers are known. The diagonal PID-controller
is discretized using a sample frequency of 8333 Hz and
implemented on the set-up hardware.

Figure 7 shows the servo error-response after applying the
references as described on the controlled setup. Figure 7
also shows the predicted error epred = kv ṙ(t) according
to (23), with only the velocity part taken into account.
Considering the maximum servo-error the resemblance
between prediction and measured maximum servo-error is
large. From which it is concluded that the outlined ap-
proach is very promising in the determination of minimum
cross-over frequencies for servo-problems.

4. CONCLUSIONS

Shown are analytical expressions between de three PID-
controller parameters and the desired cross-over frequency,
in the case of motion systems. Moreover it has been shown
that the cross-over frequency can be expressed in the
performance parameters of motion systems, in detail it is
shown for a servo-problem. The reference and with that
the performance parameters, in this class of problems are
usually formulated as a trajectory where hm is the total
displacement of the trajectory, or set-point and tm is the
time available for the trajectory, or setup-time and emax

the maximum allowable servo-error. The relation between
maximum servo-error and cross-over frequency is then:

emax =
2βhm

αω3
c tm

(
− 16

t2m
+ ω2

1

)
(29)

where ω1 is the first resonance frequency which is set to
zero in case of a motion system consisting of a moving mass
without stiffness in actuated direction. The PID-controller
settings are:

τz =

√
1
α

ωc

, τi = β · τz

τp =
1

ωc ·
√

1
α

, kp =
meqω

2
c√

1
α

(30)

where α is usually 0.1 or 0.2 and β > 1.
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