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Abstract: This paper addresses the water temperature control in condensing domestic boilers.
The main challenge of this process under the controller design perspective is the fact that the
dynamics of condensing boilers are strongly affected by the demanded water flow rate. Two
approaches are presented in this paper. First, a robust PI controller is designed that stabilizes
and achieves good performance for closed-loop system for a wide range of the water flow rate.
Then, it is shown that if the water flow rate information is used to update the controller gains,
a technique known as gain-scheduled control, the performance can be significantly improved.
Several models of a boiler in different water flow rate are identified in collaboration with
Honeywell, and the effectiveness of the results are illustrated by simulation.
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1. INTRODUCTION

A condensing boiler is a water heating device designed
to recover energy normally discharged to the atmosphere
through the flue. It operates through the use of a secondary
heat exchanger which most commonly uses residual heat
in the flue gas to heat the cooler returning water stream or
by having a primary heat exchanger with sufficient surface
for condensing to easily take place.

Modern condensing boilers are comprised of microproces-
sor controlled combustion which adjusts the amount of
fuel and air supplied to the burner. This is performed
by using an embedded algorithm which considers outdoor
temperature, temperature of the supplied water, etc. Con-
tinuously controlled units also minimize the on-off cycling
for increasing efficiency.

The main characteristic of this process is its nonlinear
behaviour, where the dynamics are strongly dependent on
the operating conditions defined by the demanded water
flow rate. Developing a physical nonlinear model for the
plant and computing a nonlinear feedforward control could
be considered as a solution to this problem. However,
because of great variability of the condensing boilers, this
approach needs a considerable effort for modeling. Another
approach to model the nonlinear system is to use a finite
set of linear models, which locally approximate the original
dynamics at different operating points. In such cases, the
designed controller must be able to stabilize and guarantee
a reasonable performance for all operating conditions.

Many robust controller design methods for multimodel
systems are available in the literature. Toscano (2007)
proposes a method to design PID and multi-PID to control
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nonlinear systems using multimodel in the state space
representation. The time delay is approximated by a high
order transfer function and the controller is tuned using
an iterative algorithm with no convergence result. Ge
et al. (2002) introduce a robust PID controller design for
uncertain systems via LMI approach. The authors use the
multimodel paradigm to describe the uncertainties and de-
rived a convex constraint problem to design the controller.
In Nyström et al. (1999) a multimodel controller design
combined with gain scheduling methods is studied based
on a mixed H2/H∞ problem. These approaches require
the approximation of the time-delay and suffer from the
conservatism related to the existence of a common Lya-
punov matrix for all closed loop systems. Gain scheduled
controllers have been widely and successfully applied to
divers fields and many approaches are available to design
such controllers. Blanchett et al. (2000) and Zhao et al.
(1993) developed a fuzzy gain scheduling strategies for PID
controllers for process control where reasonable perfor-
mance has been reported with simple control schemes. For
a detailed review of gain-scheduling analysis and design
refer to Leith and Leithead (2000).

In this paper the method given in Karimi et al. (2007)
is applied to design a robust PID controller for the con-
densing boiler problem. The main feature of the method
is that the stability, robustness margins and some perfor-
mance specifications are guaranteed by linear constraints
in the Nyquist diagram. Therefore, a PID controller can be
designed using linear programming. An extension to this
method to design gain-scheduled controllers was presented
by Kunze et al. (2007) and is applied to design a gain-
scheduled PI controller for the condensing boiler where
the gains are function of the requested water flow rate.

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 ThA1.5



Fig. 1. Simplified boiler scheme

The article is organized as follows: the process and control
problem are described in Section 2. Section 3 introduces
the robust control design method together with the simula-
tion results. Section 4 shows how the system performance
can be improved by a gain-scheduled controller. Some
concluding remarks are given in Section 5.

2. SYSTEM DESCRIPTION

Figure 1 shows a simplified scheme of a domestic boiler.
Most boilers work on two different modes: central heat-
ing (CH) and domestic hot water (DHW) that normally
are mutually exclusive. The returning water from central
heating (CH return) will be heated up in the primary
tube-in-tube heat exchanger which is located close to the
combustion chamber. A sensor monitors the water temper-
ature leaving the primary exchanger (Tc). If CH mode is
activated, then the control system will define the necessary
power to keep Tc in the desired set-point. The heated water
will thus be driven around the building by a pump and will
come back to the boiler in a closed loop.

When the water flow-rate sensor (Fs) detects a demand
for domestic water, the DHW mode will be used. Here,
a three way valve will switch and the CH loop will be
closed through the secondary heat exchanger, i.e., during
DHW operation there is no water circulation around the
building, but it returns to the primary heat exchanger
right after leaving the secondary. In this mode the cold
water for domestic use (DHW inlet) coming from the
supply system will be heated up in the secondary heat
exchanger (typically plate heat exchanger) by the hot
water of the central heating. The controller will define the
necessary power to maintain the temperature Td in the
set point. It is worth to point out that when Td is being
controlled the temperature Tc can vary freely.

There are two main control loops: the first one will control
the temperature of the CH water leaving the primary
heat exchanger and the second controller will maintain
constant the temperature of the DHW at the output of the
secondary heat exchanger. As it has been said, generally
it is not possible to control both temperature at the same
time. It means that there will be a switching between the
two control loops. The supervisor will switch automatically
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Fig. 2. Controller in domestic hot water mode

from the CH to the DHW controller whenever the flow-rate
detects a demand for domestic hot water.

The control problem is different for each mode. In the CH
controller the dynamics of the system are slow and the
main disturbance is the ambient temperature which has
a very large time scale. Furthermore, the water is driven
around a closed loop with constant flow rate.

The goal of the DHW controller is to maintain the domes-
tic hot water Td at the set point and reject the disturbances
as fast as possible without oscillation since the perfor-
mance of the controller affects directly the comfort of the
user. The control of the domestic hot water temperature is
much more critical than the CH controller. The conditions
may change very quickly and the controller must respond
fast. Here, the disturbances are mainly the water flow rate
Q which is demanded and the temperature of water coming
from the supply system.

The flow rate can vary drastically in a short period of
time, which creates strong disturbances. In fact, one of the
main challenges controlling this process is the fact that the
dynamics of the system depend strongly on the demanded
water flow rate, as we shall see in the following. For this
reason, the focus of this paper is the robust design of the
DHW controller.

Figure 2 shows the block diagram of the DHW control
system. The controlled variable is the temperature Td

of the water at outlet of the secondary heat exchanger;
disturbance Q is the demanded water flow rate and u is
the output of the controller used to keep the temperature
at the set point. This value will then be converted to the
real actuator input which depends on the boiler.

The results in this work are based on a domestic condens-
ing boiler comprised by a variable speed fan. The fan speed
is proportional to a pressure difference which drives fuel
into the burner. i.e, higher speed indicates higher power.
The working range of the fan speed in this case is from
1000 rpm to 5350 rpm.

Our goal is to design the controller Cd which offers
stability, fast response and small overshoot for a whole
range of water flow rate. The first step in the controller
design is to obtain the system’s model. Therefore, a series
of open-loop experiments were carried out in order to
identify models at different values of water flow rate Q. In
this case, we define 6 operating points: Q = [3, 4, 5, 6, 7, 8]
l/min.

The identified systems are basically first order models in
the form

Gi(s) =
Ki

τis+ 1
e−θis (1)

where the parameters are given on Table 1. As it can be
seen, the static gain Ki of the system ranges from 0.0093
up to 0.0216 while the time constant τi goes from 31.8 s
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Table 1. Models parameters in different oper-
ating points

Model: Ki[◦C/rpm] τi[s] θi[s]
G1 (8 l/min) 0.0093 31.8 6.2
G2 (7 l/min) 0.0103 34.1 6.0
G3 (6 l/min) 0.0117 34.8 6.7
G4 (5 l/min) 0.0139 37.6 9.8
G5 (4 l/min) 0.0170 57.4 12
G6 (3 l/min) 0.0216 62.1 15.2

up to 62.1 s. As expected using energy balance, with low
flow rates the static gain of the system is higher. When
the water flow rate is higher the heat transfer coefficient
is also higher. This explains the smaller time constant.

3. CONTROL DESIGN METHOD

While the design of a controller that matches the specifica-
tions for a single operating point seems to be trivial, find-
ing a fixed controller which works properly in all operating
points might not be a simple task. To solve this problem
a method is presented to design robust controllers for
multi-model uncertainty using linear programming. The
main feature of this method is that the stability and some
robustness margins are guaranteed by linear constraints
in the Nyquist diagram and the method is applicable to
multiple models as well (see Karimi et al. (2007)).

3.1 Design of robust controllers

Consider the class of linear time-invariant continuous-time
SISO systems with no pole in the right-half plane (RHP).
In order to design the controller, it is assumed that either
a parametric transfer function with time delay or a non-
parametric spectral model is available. Suppose that the
frequency domain is discretized in a sufficiently large finite
number of points N . The set of models is given in the
following by

M := {Gi(jωk) i = 1, . . . ,m; k = 1, . . . , N} (2)

where m is the number of models in the set.

A PID controller can be defined by C(s) = ρTφ(s) with

ρT = [KP ,KI ,KD] (3)

φT (s) = [1,
1

s
,

s

1 + Tfs
] (4)

where the derivative filter time constant Tf is supposed to
be known. �

Let the open loop transfer function be defined as

Li(s) = C(s)Gi(s)

With this parametrization, every point on the Nyquist
diagram of Li(jω) = C(jω)Gi(jω) is a linear function of
the controller parameters ρ.

Li(jω) = ρTφ(jω)Gi(jω) = ρT [Ri(ω) + jIi(ω)] (5)

with

Ri(ω) =Re{φ(jω)Gi(jω)} (6)

Ii(ω) = Im{φ(jω)Gi(jω)} (7)

where Re{·} and Im{·} stand for real and imaginary part
of a complex value.
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Im 
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Fig. 3. Lower bounds on the gain and phase margins and
linear constraints in the Nyquist diagram

The classical robustness indicators like gain and phase
margins as well as the performance indicator, the crossover
frequency ωc, are nonlinear functions of the controller
parameters. The optimization methods with constraints
on these values leads to non-convex optimization prob-
lems and cannot be solved efficiently. The basic idea is
to present some linear constraints on the controller pa-
rameters that guarantee a lower bound on the robustness
margins and the crossover frequency (Karimi et al. (2007)).
To proceed, consider that a lower bound, gm, for the gain
margin and a lower bound, ϕm, for the phase margin are
given. Then, in the Nyquist diagram, the straight line d1
that passes through (−1/gm, 0) and (− cosϕm,− sinϕm)
is completely known and can be represented by (see Fig 3):

y =
sinϕm

gm cosϕm − 1
(gmx+ 1) (8)

If the Nyquist plot of the open loop transfer function lies
to the right of d1, lower bounds on the gain and phase
margins are ensured. This can be presented by a set of
linear constraints on the controller parameters ρ:

ρTIi(ωk) <
sinϕm

gm cosϕm − 1

(
gmρTRi(ωk) + 1

)

for i = 1, . . . ,m , for k = 1, . . . , N (9)

These constraints can be simplified using α, the slope of
d1, as follows:

ρT (cotαIi(ωk)−Ri(ωk))− 1/gm < 0
for i = 1, . . . ,m , for k = 1, . . . , N (10)

The closed-loop performance can be given by a lower
bound, ωx, on the crossover frequency. This can also be
presented as a set of linear constraints in the Nyquist
diagram. Figure 4 shows a line d2 in the complex plane,
which is tangent to the unit circle centered at the origin.
The part of d2 between d1 and the imaginary axis is a linear
approximation of the unit circle in this region. The open
loop Nyquist curve intersects d2 at a frequency, ωx, which
is always less than or equal to the crossover frequency
ωc. Hence, the frequency ωx can be used as a lower
approximation of the crossover frequency. The constraints
can be summarized in the following way: the Nyquist curve
must lie below d1 and above d2 for frequencies greater
than ωx. It must also lie below d2 for frequencies less
than or equal to ωx. The angle β should be chosen small
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Fig. 4. Linear constraints for robustness and performance

enough such that the Nyquist curve cannot approach the
critical point -1 from the left side. In other words d2 should
intersect the negative real axis at x < −2 + 1/gm (or
sinβ < (2− 1/gm)−1).

The closed-loop performance can be optimized by increas-
ing iteratively ωx or by maximizingKI which leads to min-
imizing the integrated error (IE) (Åström and Hägglund
(2005)). This can be described by the following linear
optimization problem

maxKI

subject to

ρT (cotαIi(ωk)−Ri(ωk))− 1/gm < 0 ωk > ωx,

ρT (cosβIi(ωk) + sinβRi(ωk)) > −1 ωk > ωx, (11)

ρT (cosβIi(ωk) + sinβRi(ωk)) ≤ −1 ωk ≤ ωx,
k = 1, . . . , N i = 1, . . . ,m

The constraints given by (11) are valid only if Li(s) has
one or two integrators. For more general cases like unstable
systems or systems with complex poles on the imaginary
axis as well as other type of closed-loop performance (H∞,
loop-shaping) see Karimi and Galdos (2010).

3.2 Simulation results

In this section a PI controller is designed by the proposed
method for the boiler temperature control problem. The
simulation results are also presented.

Consider a PI controller which should guarantee robust
stability and performance for all operating points pre-
sented by models G1 to G6 in Table 1. The design spec-
ifications are ϕm = 60◦, gm = 2. These margins lead
to α = 90◦. Since the open-loop bandwidth varies sig-
nificantly from one model to another, no constraint for
crossover frequency is considered. The phase margin was
chosen in order to avoid a large overshoot and to guarantee
the robustness with respect to some uncertainties, for
instance, the temperature of the inlet water, which have
not been described by this set of models.

Using the specifications aforementioned, the optimization
problem stated on Eq. (11) is solved by linprog of
MATLAB optimization toolbox using N = 150 frequency
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Fig. 5. Nyquist diagram of Li

0 50 100 150 200 250 300
19

20

21

22

23

24

25
26

Step response

Te
m

pe
ra

tu
re

 [C
]

Time [s]

0 50 100 150 200 250 300
1000

1200

1400

1600

1800

Fa
n 

sp
ee

d 
[rp

m
]

Time [s]

Fig. 6. Step response of the closed-loop system for all
models

points logarithmically spaced between 0.005 and 2 rad/s
and m = 6 models. The following controller is found:

C1(s) =
103.2s+ 1.584

s
(12)

Figure 5 shows the Nyquist plot of Li = C1Gi. As it can
be seen, the controller C1 respects the constraints for all
the models, i.e., in each case the Nyquist diagram of the
open loop transfer function Li is at the right hand side of
the line d1 which cross the real axis at the point −0.5 with
an angle α = 90◦. Figure 6 shows the step response for a
change in the temperature set point for all the six models.
It is clear that a disturbance in Td (because of a sudden
change of water flow rate) will be rejected with the same
dynamic. The settling time varies from 90s to about 250s
in different operating points.
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4. GAIN-SCHEDULED CONTROLLER

So far, we have presented a method to design robust
fixed order controllers for a set of linear time-invariant
SISO systems. This method guarantees robustness and
some performance requirements for all models in the set.
However, it can lead to high conservative solutions in
case there is a big difference between the models. The
performance can be improved if the parameters of the
controller are not fixed, but function of a given variable
(the scheduling parameter) of the system which defines
the operating point of the plant. This strategy is known
as gain-scheduled control.

The gain-scheduled controller can be computed from a set
of models of the system in different operating points or
directly from a Linear Parameter Varying (LPV) model.
In this paper, we will tune a gain-scheduled controller by
linear programming for which the scheduling parameter is
the domestic water flow rate Q. In other words, we will try
to improve the performance of the closed loop system by
using the water flow rate information inside the controller.
The mathematical formulation of the control design proce-
dure was proposed in Kunze et al. (2007) is recalled briefly
for designing PID gain-scheduled controllers.

Consider the gain-scheduled controller C(s,Q) linearly
parametrized by:

C(s,Q) = ρT (Q)φ(s) (13)

where the basis function vector φ(s) is defined in Eq. (4)
and ρT (Q) is given by

ρT (Q) = [KP (Q), KI(Q), KD(Q)] (14)

Every gain is a polynomial function of order δ of the
scheduling parameter and is defined as

KP (Q) = KPδQ
δ + · · ·+KP1Q+KP0

KI(Q) = KIδQ
δ + · · ·+KI1Q+KI0

KP (Q) = KDδQ
δ + · · ·+KD1Q+KD0

With this parametrization, we now can state an optimiza-
tion problem in a similar way as presented before with the
difference that :

ρ(Q) =

[
KPδ · · · KP1 KP0

KIδ · · · KI1 KI0
KDδ · · · KD1 KD0

]




Qδ

...
Q
1





When a set of models is available, the optimization meth-
ods presented above can be directly applied to compute
a gain-scheduled controller as the number of models and
the number of frequency points are finite. On the other
hand, If an LPV model is available, there will be an
infinity number of models corresponding to different values
of the scheduling parameter. This problem can be solved
by gridding the scheduling parameter.

Consider the case that the robustness margins are given
and control objective is to optimize the load disturbance
rejection performance of the closed-loop. This corresponds
to maximizing KI(Q) for all values of the scheduling
parameter Q. In practice Q is gridded to obtain a set
of m models for different operating points. The linear
optimization problem can thus be stated and is given in
the following.

max
m∑

i=1

KI(Qi)

subject to

ρ(Qi)
T (cotαIi(ωk)−Ri(ωk))− 1/gm < 0 ωk > ωx,

ρ(Qi)
T (cosβIi(ωk) + sinβRi(ωk)) > −1 ωk > ωx,

(15)

ρ(Qi)
T (cosβIi(ωk) + sinβRi(ωk)) ≤ −1 ωk ≤ ωx,

k = 1, . . . , N i = 1, . . . ,m

4.1 Gain-scheduled controller evaluation

A gain-scheduled PI controller will be designed in way
that its parameters are second-order polynomial functions
(δ = 2) of the water flow rate Q. The controller will take
the form

C(s,Q) =
KP (Q)s+KI(Q)

s
(16)

The problem is now to find the polynomial coefficients of
each gain of the controller. Here, the set of identified mod-
els shown in Table 1 will be used with the corresponding
scheduling parameter values Q = 3, 4, 5, 6, 7 and 8 l/min.
Using the same constraints on phase and gain margins as
in the fixed controller case (ϕm = 60◦ and gm = 2) we
solve the linear optimization problem in (15) by linprog
to get the following controller parameters:

Kp(Q) = 6.1529Q2 − 33.7901Q+ 170.9287

Ki(Q) = 0.0624Q2 + 0.8932Q− 2.2132

Note that using this control structure, we are able to
increase the closed-loop bandwidth. Figure 7 shows the
step response of the gain-scheduled control system. It
can be observed that the settling time has been signifi-
cantly improved in all operating points. Figure 8 depicts
a simulated experiment in which the performance of the
gain-scheduled controller is compared to that of a fixed
controller for Q = 8 l/min. At time 10s a set-point
step change is applied. The settling time using the gain-
scheduled controller and robust controller are, respectively,
13s and 208s. Note that although the fan speed computed
by the gain-scheduled controller is much higher, it is still
far from the maximum admissible fan speed of 5350 rpm.

It can be seen that the most critical conditions in the
control design are those with small water flow rate because
of the higher gains and time constants. This means that
boundary of feasibility for the controller design is defined
by the models in those conditions. When a robust con-
troller is designed it will respect this boundary. However,
this solution is too conservative in other operating points
with higher flow rates which deteriorates the performance.
If a gain-scheduled controller is used, it will respect the
constraints by the most critical models and at the same
time will have room for performance improvement in
different conditions. However, such an enhancement on
performance comes with a cost: to implement the gain-
scheduled strategy a water flow-meter should be installed
in order to provide the flow rate information to the con-
troller. Alternatively, an estimator of the water flow rate
could be implemented to provide the information. Such es-
timator would need the information regarding the temper-
ature of the incoming water. Variation of temperature of
DHW is measured as well as the variation of temperature
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Fig. 7. Step response for the gain-scheduled control system
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Fig. 8. Controller comparison (Q = 8 l/min), blue solid
line: gain-scheduled; green solid line: robust con-
troller.

of CH water when running in the closed-loop. The flow-
rate of CH is fixed and is known a priori. Using simple mass
and energy balance equations allows one to estimate the
water flow rate in the DHW circuit. This is economically
advantageous over the flow-meter solution since normally
temperature sensors are cheaper than flow-meters.

5. CONCLUSIONS

In this paper a methodology to robust controller design
for boiler temperature control was presented. With the
proposed approach it has been possible to cope with
large variations in the operating conditions providing good
performance for the whole range of demanded flow rate.
Furthermore, it was shown that the performance of the
closed-loop can be improved even further by using a gain-
scheduled strategy, where the gains of the controller are
polynomial function of the water flow rate.

6. ACKNOWLEDGEMENTS

The authors would like to thank Honeywell Combustion
Controls in Oggiono, Italy for their collaboration.

REFERENCES
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