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Abstract. This paper proposes an optimization algorithm for the automatic design of robust PID 

controllers using Quantitative Feedback Theory (QFT) specifications. The proposed algorithm is based 

on a criterion to minimize the energy of the control effort. To illustrate the methodology, the pitch angle 

of a laboratory helicopter is used as a model application with structured uncertainty. The results show 

that the design of robust controller can be formulated using an objective function and a number of 

restrictions that are developed as specifications.  
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1. INTRODUCTION 

This article proposes a method for the automatic design of a 

robust proportional integral derivative (PID) controller that 

combines the Quantitative Feedback Theory (QFT) – QFT 

automatic loop shaping – method with optimization 

techniques to automatically design PID controllers 

minimizing the control effort. The design method applies to 

the case study which consists of the pitch angle control of a 

laboratory helicopter with structured uncertainty (Garcia-

Sanz et al., 2006).  

The QFT technique can be used to design controllers with no 

predetermined structure for systems with parametric 

uncertainties that are modeled by intervalar linear models. 

The classic design of controllers to ensure that specifications 

are met involves the frequency response, where the controller 

gain is attenuated by appropriately manipulating the poles 

and zeros of the transfer function of the controller. This 

design can be implemented quite efficiently using support 

software, such as the Matlab QFT toolbox (Borghesani et al., 

1994). If a controller with a fixed low order structure is 

supposed, the designer has to manipulate the parameters of 

the controller to ensure that all specifications of the closed 

loop are met. 

An open problem in QFT is the automatic design of 

controllers, which is known as automatic loop shaping 

(ALS). The idea of the automatic design of controllers QFT 

was introduced by Gera and Horowitz (1992). In the 

literature, there are various approaches to the automatic 

design of loop controllers for a plant with uncertainty, so that 

specifications lead to robustness (stability, etc.) and minimize 

the controller gain. Techniques that have been used include 

genetic algorithms (Chen et al., 1998), linear programming 

(Nataraj and Nandkishor, 2007) and optimization algorithms 

(Chait et al., 1997), (Sachin, 2005).  

Some authors (Nandakumar et al., 2002) used a hybrid 

technique involving optimization and propagation of 

uncertainty, combining interval global optimization and local 

nonlinear optimization. It is usual to propose ALS methods 

fixing the controller structure, for example in Yaniv and 

Nagurka (1995).  Nataraj and Deshpande (2008) propose the 

synthesis of a controller as a constraint satisfaction problem 

with interval variables. Zolotas and Halikias (1999) propose 

an ALS method for PID controllers based on searching over a 

dense set of controllers. Molins and Garcia-Sanz (2009) 

describe a QFT method for designing controllers that is based 

on a combination of techniques, evolutionary algorithms and 

genetic algorithms. The same authors, Garcia-Sanz and 

Molins (2010) proposed an ALS method, by grouping 

previously all usually QFT specifications into two 

expressions, one in terms of sensitivity function, and other in 

terms of the complementary sensitivity function. 

In this paper, a loop-shaping design for PID controllers that 

minimize the energy of the control effort by means of 

optimization tools is proposed. 

As the problem to solve is non linear and non convex, the 

commercial global optimization package Tomlab (Pintér et 

al., 2005), which is based on branch and bound algorithms, is 

used. 

In Section 2 we formulate an automatic controller design 

problem, to minimize the energy of the control effort. Section 

3 shows the results of the design applied to a laboratory 

helicopter model system, and Section 4 presents the main 

conclusions. 

2. DESIGN METHOD FOR ROBUST CONTROLLERS  

2.1 Formalizing the problem 

The usual control structure in the QFT technique is shown in 

Figure 1, where P, G, F and H represent the transfer functions 
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of the plant, the controller, the pre-filter and the sensor, 

respectively. R, Y, U, E and Q represent the set point, the 

output, the action control, the control error and the sensor 

output signals. Finally, W, V, D and N indicate added input 

disturbances at the input of the controller, the input of the 

plant and the output of the plant as well as noise disturbances, 

respectively. 

According to Bhattacharyya et al. (1995), an uncertain plant 

can be described by an interval model: 

 
 

 

,
,
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where B and A are polynomials in the s domain, and  is the 

vector of uncertain parameters of dimension p with their 

values bounded by a compact set    of box type, i.e. 

 p         

 

Fig. 1. QFT generic control structure 

A classical problem in QFT (Horowitz, 1993; Houpis, and 

Rasmussen, 1999; Yaniv, 1999) is to synthesize the feedback 

controller G(s) and the prefilter F(s) as strictly proper, 

rational and stable transfer functions. Thus, that some 

specifications are satisfied, while the bandwidth of the 

controller is kept as low as possible, despite the presence of 

uncertainty in P(s). In general, feedback control is defined as 

   
 

 

,
,

,

c c
c

c c

B k s
G k s

A k s
     (2) 

where Bc and Ac are polynomials in the s domain; and kc is 

the vector controller parameter of dimension g. 

Controller design using QFT is carried out by formulating 

several of the system‟s frequency specifications, according to 

the requirements. In this study, three types of specifications 

are used: robust stability, robust disturbance attenuation, and 

minimization of the control effort. 

When the nominal open loop is given as 

     , ,L j P j G j      and H(s)=1 and F(s)=1, a 

robust stability specification is expressed as: 

  
 

 
1

,
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 
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where 1( )   is the maximum magnitude of the closed-loop 

tracking transfer function 
 

 

Y j

R j




. 

Secondly, the requirement for disturbance rejection at the 

plant output, or sensitivity, is expressed as: 

 
 

 
1

,
1 ,

sS j
L j

   
 

 


  (4) 

where ( )s   is the magnitude of the disturbance rejection, 

that is the upper bound of the magnitude of the 
 

 

Y j

D j




 

transfer function. 

Finally, the control effort specification is expressed as:  

          , ,U cT j G j S j          (5) 

where  
 

1
,

1 ,
S j

L j
 

 



 is the sensitivity, and 

 c  is the magnitude of the control effort, that is the upper 

bound of the frequency magnitude of the transfer function 

 

 

U j

W j




.  

2.2 Proposed design methodology 

In this paper, we propose an algorithm for automatic loop 

shaping. It is based on minimizing the control effort impulse 

response energy, given by (5), for a plant with a particular 

value of θ and controller kc:  

 
2

0

( , ) ( , , )c U cE k T k d   



      (6) 

while the energy for the whole family of plants will be given 

by  

2

0

( , ) ( , , )c U cE k d T k d d


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
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A discrete approximation of (7), given a discrete grid of 

frequencies 1 2, , , nw    and a grid of uncertain parameters 

of the plant 1 2, , , np   , could be: 

2

1 1

( , ) ( , , )

np nw

c U i j c

i j

E k d T k



     

 

        (8) 

where np and nw are the number of plants and frequencies 

considered, respectively. 

The Algorithm shows the procedure to compute the optimal 

solution of the controller parameters kcKC, where KC is the 

initial bounded set of controller parameters, 

 g
c c c cKC k k k k    , which minimize the control 

effort (8) taking into account the restrictions gave by (3), (4) 

and (5),  in case of a generic controller structure. 

Moreover, although it is not a predefined requirement, we 

chose a structure of control that is similar to the one used in 
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the referenced articles, i.e. a PID with a filter in the derivative 

action: 

 
1

, (1 )
1

d
c p

i f

T s
G k s K

T s T s
  


  (9) 

where Kp is the proportional gain, Ti is the integral time, Td is 

the derivative time and Tf is the high frequency filter 

parameter. Usually filter is not been regarded as a part of the 

design but added afterwards to prevent that the high 

frequency gain of the controller growing up. In the proposed 

approach the four parameters has been considering, being   

the controller parameter vector , , ,c p i d fk K T T T   
. In this 

case, the set of a minimum and maximum parameter bounds 

are , , , , , , ,c p i d f c p i d fk K T T T k K T T T    
  

. 

Algorithm. Automatic loop shaping 

Step 1. Choose the grid of frequencies 1 2, , , nw   and 

parameters of the plant  1 2, , ,i np     . 

Step 2. Solve the following optimization problem. For each 

frequency 1 2, , , nw   , and for the set of plant parameters 

: 

   
2

1 1

min ( , , )
c

np nw

U i j c
k

i j

T k   
 

   

Subject to: 

  For i=1,…np 

        For j=1,…nw 

  1, , ( )R i j c jT k     

   , ,i j c s jS k     

   , ,U i j c c jT k     

     End 

End 

c c ck k k   

Step 3. If the solution has not been found, the controller 

parameters bounds should be increased or/and the 

specifications should be relaxed and go to Step 1. 

Fig. 2. Algorithm for the automatic design of the controller 

Wallén et al. (2002) presents a study of the advantages to 

constrain the ratio Ti/Td to a fixed value n4 when loop 

shaping is applied to design PID controllers. Also a low pass 

high frequency filter, with a priori selected time constant Tf, 

is used in the derivative term in order to limit the 

susceptibility of the controller to measurement noise. Tf has 

been selected as one tenth of the derivative time following 

the suggestions of Astrom et al. (1995). 

According this, we fixed some restrictions to obtain 

consistent parameters, and to reduce the searching space of 

PID parameters; some restrictions have been fixed between 

them: 

 / 4; 0.1*d i f dT T T T     (10) 

These two conditions are added in the algorithm as new 

constraints. In summary, the PID automatic loop shaping is 

based to solve the optimization problem (Algorithm, Fig. 2), 

adding the 2 new mentioned constraints (10), for all i   

and  i  . 

 

3. APPLICATION TO THE MODEL OF A LABORATORY 

HELICOPTER 

3.1 Physical model of the helicopter 

To test the Algorithm proposed in the previous section, we 

used a scale laboratory helicopter with two parallel rotors. 

This application was designed by Quanser and described in 

detail in García-Sanz et al. (2006). Fig. 3 shows its general 

appearance.  

 

Fig. 3. General appearance of the Quanser Helicopter 3 DOF 

García-Sanz et al. (2006) presents a detailed description of 

the helicopter characteristics, and the physics equations that 

can be used to obtain a linear time invariant model (LTI) of 

the pitch angle, by preprocessing appropriate linearizations 

and simplifications. The final model provided a second order 

LTI model, with parametric or structured uncertainty 

obtained from experimental data. A more complete model is 

described in Egaña et al. (2001) and García-Sanz et al. 

(2002), in which the angles of roll, pitch and yaw are 

included as three degrees of freedom (3 DOF).  

The pitch angle model is used to show the results of the 

Algorithm described in Fig. 2. From the estimates of physical 

parameters (length, mass, friction) in Egaña et al. (2001), a 

second order transfer function is defined in which the 

system‟s signal input is voltage, the output is the pitch angle 

and the parameter are unknown but bounded, as it is  

indicated in (11). 
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3.2 Design specifications 

The aims of the robust controller design are similar to those 

proposed in Egaña et al. (2001), particularly robust stability, 

sensitivity and control effort. 

Regarding this previous design, the following limits of 

performances have been selected: 1( ) 2   ,   

 
2

2( 0.01)( 0.3)

(( ) 4 4)
s

j j

j j

 
 

 

 


 
 and   5000c   . First and 

third, constrain the ratio between output-input and control 

effort-input, respectively, at all range of frequencies. Second, 

sensitivity bound is a frequency dependent specification. 

In the frequency spectrum, the same range was taken for all 

the specifications and only for low frequencies: 

 0.1, 100 rad/sec. We chose this frequency range 

because it includes the frequencies that are apparently more 

problematic in terms of meeting the specifications. 

The domain of the control parameters has been selected 

taking into account the previous work of Egaña (2001) and 

initial results of our methodology with a large domain of 

control parameters. Now, we restrict this domain to the 

following bounded set (time parameters in seconds): 

 

 

 

 

10,300

1, 20

0.25,5

0.025,0.5

p

i

d

f
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T

T

T

 
 
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 

 
 
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   (12) 

3.3 Results 

In order to solve the optimization of the Algorithm that 

corresponds to a non convex and non-smooth problem, a 

global optimization commercial toolbox has been used to 

solve this problem. In particular, the optimization 

environment Matlab/Tomlab toolbox (Pintér et al., 2005) 

using the Efficient Global Optimization algorithm, ego,    

(Jones et al., 1998) has been applied. To obtain the optimal 

controller solution, objective function (8) and constraints (3), 

(4), (5) and (10), has been properly manipulated to obtain the 

equivalent polynomial expressions. 

The Algorithm, proposed in Section 2.2, was applied by 

taking a finite number of 8 plants, obtained by all the 

combinations of lower and upper parameter bounds, and 

choosing the following grid of frequencies: 

 0.1     1      2.5       5      10      50      100 / secrad  . We 

selected this limited number of plants and frequencies 

because we considered that it provided enough information to 

illustrate the method. When we increased the number of 

plants and the frequency grid, we found that the method was 

still valid, but the tradeoff was a higher computational cost. 

By mentioned conditions, the optimal PID controller 

computed is: 

 
293.76(1.5434 2.4294 1)

(0.05921 1)

s s
G s

s s

 



  (13) 

corresponding to a controller (9) with the following 

parameter values (time parameters in seconds): 

222.2;  2.37;  0.592;  0.0592;p i d fK T T T     (14) 
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Fig. 3. Nichols chart with the designed controller. That 

includes the three specifications 
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Fig. 4. Sensitivity specification and Bode diagram module of 

a set of 8 controlled plants. 

The QFT toolbox (Borghesani et al., 1994) allows validate 

the PID computed. Fig. 3 shows, in the Nichols chart, the 

QFT bounds for each i. Also, in a solid black line, shows 

the nominal open loop plant with the synthesized controller, 

L(ji) (the circle „o‟ denote the response at each i 

frequency), where nominal plant corresponds with all the 

parameters at their lower values. Notice that L(ji) satisfies 
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the bound at some frequencies at the limit, concluding that 

the optimal controller were obtained, for the set of 

frequencies chosen.  

As redundant information, there is shown in Figure 4 the 

module on the Bode diagram of the sensitivity specificaction. 

The red lines show the sensitivity module for the eight plants 

selected and the green line shows the maximum magnitude of 

the disturbance rejection, ( )s  , to note that it is the upper 

bound of the magnitude of the 
 

 

Y j

D j




 transfer function. 

 

Fig. 5. Representation of the function to minimize, without 

considering constraints and depending on the parameters Kp 

and Ti 

An additional information is available in Fig. 5. The objective 

function is computed using equation (8) for different values 

of controller parameters,  Kp  [100, 300] and Ti  [1, 20], 

where Td  and Tf   have been restricted by (10). 
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Fig. 6. Representation of the function to minimize, 

considering constraints, depending on parameters Kp and Ti 

When constraints are added, only one of them, specifically 

the sensitivity specification (4), is not fulfilled for the whole 

range of the parameters Kp and Ti . This is shown in Fig. 6 by 

the abrupt jump in the graph that appears to be modified. The 

optimal controller corresponds to the lowest point of the 

boundary line, which coincides with the values of Kp and Ti 

found by the optimizer given in (14). The value of the 

objective function for the optimum point (minimum) is 

fopt=2.54e+7. All the constraints are satisfied for this optimal 

point, corresponding to the controller found. 

3.4 Time domain analysis 

The described benchmark (García-Sanz et al., 2006) proposes 

the design of a controller that can follow a given temporal 

reference signal, as shown in Fig. 7, where are also shown the 

time responses of eight plants chosen at random. 

Fig. 7 shows that the response of the closed loop system is 

fast, with a peak at around 20% when the input signal is a 

step. This peak could be reduced by lowering the threshold 

value of robust stability. The speed of the response entails a 

significant increase in control effort. This oscillation can be 

reduced by decreasing the value of the control effort. In this 

case, a large value  c   is considered as a constraint.  
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Fig. 7. Time response of a set of 8 plants in response to a 

reference set point 

 

4. CONCLUSIONS 

In this paper, we proposed an algorithm for the automatic 

design of controllers. It is based on optimization of an index 

associated with control effort. Some studies in the literature 

aim to obtain a similar objective of automatic loop shaping 

based on optimization. The algorithm has been applied to the 

specific case of controller design for a model of the pitch 

angle of a laboratory helicopter, with structured uncertainty. 

It was supported by a commercial global optimization tool, 

Tomlab, with satisfactory results, as validated by simulations. 
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