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Abstract: The objective of this paper is to design a path following control system for a
car-like mobile robot using classical linear control techniques, so that it adapts on-line to
varying conditions during the trajectory following task. The main advantages of the proposed
control structure is that well known linear control theory can be applied in calculating the PID
controllers to fulfil control requirements, while at the same time it is flexible to be applied in
non-linear changing conditions of the path following task. For this purpose the Frenet frame
kinematic model of the robot is linearised at a varying working point that is calculated as
a function of the actual velocity, the path curvature and kinematic parameters of the robot,
yielding a transfer function that varies during the trajectory. The proposed controller is formed
by a combination of an adaptive PID and a feed-forward controller, which varies accordingly with
the working conditions and compensates the non-linearity of the system. The good features and
flexibility of the proposed control structure have been demonstrated through realistic simulations
that include both kinematics and dynamics of the car-like robot.
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1. INTRODUCTION

The motion control of wheeled mobile robots has attracted
a remarkable attention during past years [Kolmanovsky
and McClamroch (1995)]. As defined in [Morin and Sam-
son (2008)], given a curve on the plane (defined with
its curvature c¢), a non-zero longitudinal velocity for the
robot chassis (u1), and a point of interest attached to
this chassis (P), the goal of this problem is to make P
move on the curve with velocity u;. For years, the most
studied robot model was the unicycle-type (defined in
[Champion and Chung (2008)]) [L.E. Aguilar and Fleury
(1998)], [K. Shojaei and Tabibian (2010)], but in the last
years, the interest of car-like robots has increased thanks to
the direct application to the automotive sector [Mellodge
and Kachroo (2007)] and [J. Villagra and de Pedro (2010)].
As we will see, the model that represent the motion of the
robot is very non-linear and most commonly non-linear
control techniques are used; some based on the model of
the robot [L.E. Aguilar and Fleury (1998)], [Morin and
Samson (2008)] and others based on a transformation of
the model [Mellodge and Kachroo (2007)]. An important
aspect of this non-linear controller is its little flexibility,
i.e. if the model changes slightly, the controller has to be
completely redesigned (a new Lyapunov function must be
found). On the other hand, with this kind of controller it is
harder to adjust the control objective. To the knowledge of
the authors, there are few works about path following for
car-like mobile robots based on linear control techniques.
The advantage of using such techniques is the simplicity

to define a control objective due to the very widely ex-
tended knowledge about linear control and PID controllers
[Astrom and Hagglund (2006)]. In addition if the model
changes, adjusting a new controller is relatively easy. The
main drawback of linear techniques is that the designed
controller only works well around the selected linearisation
point.

In this paper an adaptive control scheme will be designed
with linear control techniques to solve the path following
problem for a car-like mobile robot. The scheme is formed
by and adaptive PID working between a variable point to
compensate the known disturbances (like a feed-forward
controller). In this way, we benefit of the advantages of
the linear control, while we avoid its drawbacks. We will
begin the paper selecting the robot model that we will use
(section 2). Then, in section 3, we will analyse this model,
linearising it and obtaining a linear time variant (LTV)
model, that depends on an equilibrium point that we will
also calculate (section 3.1). From this point we will be able
to get the transfer function (TF) with variable coefficients
that represent the problem that we want to control. We
will work first of all, in continuous time (section 3.2) and
then we will pass to discrete time (section 3.3) because
we will assume that the sensors of the robot are visual
cameras working at low-frequency (around 30Hz). Once
we get the TF of the system, we will proceed to design
the control structure. We will develop an adaptive PID
controller working between a variable equilibrium point
(section 4). We will use the root locus (RL) to adjust
dynamically the PID parameters. After that, in section
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6, we will show how this controller works under two kinds
of testbed simulations (defined in section 5) to prove its
goodness. In section 7, we will discuss some limitations of
the original model, and how we can solve these problems
with the same design method. Finally, section 8 concludes
the paper.

2. PROBLEM STATEMENT

For the whole development of this paper, we selected the
widely used Frenet-frame kinematic model of a car-like
robot defined in [Morin and Samson (2008)].

N c(s) :a_:

Fig. 1. Model Representation

The robot model used is (see figure 1):

fom
1—d-c(s
-[cos B, — t(aﬁqﬁ (lg-cosf, + 1y -sinb,)] .
d=uy - [sinf, + ? (I3 -cosB, — Iy -sinf.)]  (2)
ée:%Wancbfé'c(s) (3)

Where: P is the point of interest attached to the robot;
P, is the orthogonally projection of P on the circuit (the
origin of the Frenet-frame); d is the distance between
P and the circuit (Py); 6. is the angle between the
longitudinal axis of the vehicle and the tangent to the
circuit in Pg; s is the progress on the circuit; ¢(s) is the
curvature of the circuit in Ps, u; is the linear velocity
of the robot; ¢ is the angle of the steering wheels; L is
the distance between the robot axis; and [; and [l is the
position of P.

We can simplify the model by combining equations (1) and
(3), and for simplicity, we assume L,l; > 0 and Iy = 0,
getting:

d=u - [Sinee—i—? 11 - cos B,) (4)
0. = n -tan ¢
L c(s) tan ¢ . (5)
TS ) 8T T hosindd

Other assumptions that we will use are the following: (1)
the robot always moves forward with a known velocity
(u1 > 0), (2) this velocity does not change abruptly, (3)
occasionally the curvature (c¢) is known but it is not strictly
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necessary, (4) this curvature can be discontinuous but it
has to be defined in the whole curve, (5) the angle of the
robot with the curve has to be small (f. < Z) and the
distance of the robot to the line will be small (d =~ 0).

3. MODELLING AND ANALYSIS
3.1 Model linearisation

We begin linearising the model equations (4), and (5)
around an equilibrium point w1 _jin, Oc_iin, Grin, Clin and
dlin:

Adzbl-Au1+bg~A96+b3~Aq§ (6)
Af, = by - Auy + bs - Ad + bg - AB, + by - Ad + bg - Ac(7)

Where b; ! only depends on the equilibrium point and all
the defined constants.

By hypothesis, we define three (of five) components of
the linearisation point: first, d;;, = 0 because we want
to work at dy.y = 0; second, w1z = Ui—1in(t) is a known
value; and third, ¢, = ¢in(t), is a variable value that
depends on the circuit and, in the best case, we know
it. To get the expression of the other component of the
linearisation point, we use the non-linear equations (4) and
(5) evaluated in the equilibrium point:

: . tan ¢y
diin = W1—tin - [SIN0c_tin + 1y - cosOe_iin]  (8)
; U1—15 Cli
ee—lin = = tan ¢lin — Ul—lin * —_ .
L 1-— dlin * Clin (9)

tan ¢lin

[cos O _pin — 1y - sinOe_yin]

Another hypothesis that is assumed is dj;,, = 0. This
means that the distance to the curve does not change (it is
our control goal). It implies that considering the functional
restrictions u; i, # 0 and || < & equation (8) becomes:

L
@rin = arctan (—7 tanbe_in) (10)

If we only care of the final value of the equilibrium points,

we use the hypothesis 6, = 0, and then we get the final
value of the last component of the equilibrium point:

(11)

To obtain the real value of the linearising point, we have
to solve the equation (9) according to the rest of the
equilibrium point, and using the final values calculated
above. Using the MATLAB®symbolic engine for equation
integrations, we obtain:

Oc—tin = — arcsin (¢ - 11)

. _Milin
Oc—tin(t) = arcsin(e” &

“(Clin—final — Clin—init) * 11 — Clin—final - 11)

(12)

Finally we can simplify the value of the b; coeflicients,
adding the linearisation point conditions (10):

Ad =by-Ab, +bs- A¢
Aée:b4'AU1+b5'A¢+b7'Ad—|—bg-Ac

1 More info about all coefficients can be found on www.visionduav.es
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3.2 Continuous transfer function

The continuous transfer function (CTF) that represents
the model is G(s) = ﬁ—g. We operate with equations (13)
and (14) in the Laplace domain getting the following CTF:

Ad =G(s)- Ap+ Py, (s) - Aug + P.(s) - Ac (15)
Where the main CTF that represents the system is
Ad s + AQ
Gs)=—=A1- ———— 16
) =3 =M a4, (16)
And the CTFs that represent the disturbances are:
Ad Ay
P, =—=—-— 17
uy (S) Aul 82 + A3 ( )
Ad As
P.(s)=—=—-""— 18
© =X~ 2 4 (18)
Where coefficients A; depend on b;.
Now, the system is modelled as shown in figure 2.
U1—tin Disturbances Clin
J&‘ Auy Ac =
Uy U Pul(s) Pc(s) [ €
Complete
model of the
robot
» =102 6 > d
¢’lin Main CTF of the robot i

Fig. 2. System Representation

We can work with the system in three different ways:

(1) We can use a constant linearisation point wuj_j;, =
cte, ciim = cte and Op_py = cte = ¢un = cte. In
this case, the CTF will be linear time invariant (LTT)
but if we are not in the conditions of the linearisation
point, G(s) will not represent the system well and the
modelled disturbances (¢ and u) will affect the robot
model.

(2) The second option is to choose a variable linearisation
point in case it is known wq_y;, = u1, ¢ = ¢ and
ee—lin ~ 6e—lin(t) = ¢lin ~ Qslzn(t) NOW7 the SyStem
may be simplified to Ad = G(s) - A¢, but G(s) has
variable coefficients. The system is know LTV and
there are no modeled disturbances.

(3) The third option is a mixed case in which we know
the value of u; but not the value of c¢. The system is
LTV and there are modeled disturbances. This is the
most usual case.

Usually in classic control, the chosen option is the first one
but for this extremely non-linear problem, this option does
not work well. Whenever it is possible, we will work in the
conditions of the second option, but it can be common to
work in the conditions of the third possibility.

To conclude this section, we are going to analyse the CTF
G(s). Our intention is to understand it better in order to
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design the best control structure in the next section. The
system has two poles given by:
Ul—lin .
P2 =ty —As = £y ———| - (19)
cos 0o _iin
And one zero in
UL —lin

z1 = 7A2 = -
li - cos? fe_iin

(14 cpin - 1y - sin B _y,)(20)

Under the conditions of operation (uj_j;, > 0 and
|0c—1in] < 5), the poles (see equation (19)) are on the
imaginary axis and they will move towards the point (0, 0)
according to the growth of |¢ji|, |u1| and |0e—in|- The zero
(see equation (20)) is on the real negative axis and it also
moves (see figure 3).

e
N)
% Pi=J Cun- U1 -iin
- 1 L
1-lin .
2=~ (L+cyn by -sinfe_yn)

1y - cos? Oy U

© R
# M= i Uy—tin

2 LSy y—

Fig. 3. Position of zero and poles if the system is continuous

8.8 Discrete transfer function

As we said in section 1, we work with discrete sensors
like digital cameras. Therefore we have to work in discrete
time. We assume a sampling period 7. We discretise
the continuous model G(s) of section 3.2 with the exact
residuals method (Aracil and Jimenez (1993)), getting:
Adk zZ+ BQ

B()G(Z) =B

==k _p .=z 21
Ay, ! 224 Bs -2+ By 1)

where B; depends on A; and T.

The discrete system has the same number of zeros and
poles than the continuous one (saw in section 3.2) and they
move analogously. But now instead above the imaginary
axis, the poles do it above the unit circle, and the zero
instead of moving above the negative half of the complex
plane, it do it above the real axis inside unit circle.

4. CONTROL SCHEME

To design the control system, the model of section 3 will
be used. We assume that the velocity of the robot (uq) is
externally given and known by us, and we can only act
on the steering of the robot. We will close the loop with
the value of the distance to the curve (d), obtained with a
sensor (in some case it can be discrete). We occasionally
know the value of the curvature of the curve (c¢). The error
to the line is given by ¢ = d,.; — d (and for our problem,
we assume dyey = 0).
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The designed control scheme (figure 4) is an adaptive PID

controller (R(s) = 2—?), working between a theoretical

and variable linearisation point. This point is calculated
in section 3 and the objective of making it variable is
to compensate with a theoretical equation, the known
disturbances as the feed-forward controller would do. The
adaptive PID has the objective of compensate the error
that is not considered in the equilibrium point. The input
of the PID controller is given by Ae = €j;,, — e = Ad = d,
assuming dref—iin = diin = 0. The output is A¢, and
we have to transform it to the input of the robot making

cuy

Linearizing
iin) Oo_tin: Crin

y
Adaptive
PID

¥

SYSTEM

Fig. 4. Control Structure: adaptive PID working between
a variable point to compensate the disturbances

4.1 Continuous controller

First of all, we are going to design a continuous controller
to control the LTV system modelled in (16). We can design
the PID controller with the criterion that we want (RL,
Bode diagram, ..). In this paper, we will use the RL to
design it. As the system is modelled as a LTV, the RL will
change continuously. Therefore the parameters of the PID
will change with it.

From the observation of the RL, we can extract that
the system can be stably controlled with a P controller,
but it will have position and tracing error due to the
model disturbances (because of modelling errors or simply
because we do not know the value of the curvature). To
avoid this source of errors, we design a PI controller:

A0 (s+a)

R(s) Ac -

(22)
With this method we can put the zeros and the poles
of the system where we want (see figure 5). We select

the following method for designing the PID (suggested in
[Matia et al. (2003)]):

First of all, we put the zero of the controller (—a) to a
third of the place where the dominant poles are if we use a
P controller and we want them to be pure real and equal:

1 /

Then, the controller gain (K¢) is calculated to put the
poles of the system in the pure real zone. The characteristic
polynomial of the close loop system is p(s) = s-(s%+ A3) +
Ko - Ay - (s+a) - (s + Az). The points of the complex

(23)
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|54

Fig. 5. Continuous Root Locus with a PI controller

plane belonging to the RL, satisfy p(s) = 0, and we get
computationally the point where the RL converges (—d;).
Then, we get the value of the gain of the PI controller:

1 dy - (d} + As)

el =A@ —a)- @ - &)

(24)

The system is stable because we have designed that way
with the RL method, but we can also prove it with
the Routh-Hurwitz criterion [Matia et al. (2003)]. In the
transitions of the linearising point the system might not
be stable. As we assume that the linearisation point will
change slowly, we assume that there will not be stability
problems in the transitions. In section 6 we will see that
despite the linearisation point change, the controller works
well.

4.2 Discrete controller

Once we have designed the continuous controller, we can
design the discrete one. We select a similar structure with a
discrete PI, working between the linearisation point. Now
the linearisation point will be sampled. The design of the
discrete adaptive PI can be done in two ways. The first
one is to use the discrete RL in the same way that in the
section above. This is quite difficult. We prefer to discretise
the continuous PI controller by doing:

Ay

z—1 zZ—aq

R(2) Ay R(s=7—)=Kca- —— (25)
where:
Keca=Ke-(a-T+1) (26)
1
ad_a-T—Fl (27)

In that chase, we may have stability problems. We use the
Jury criterion [Aracil and Jimenez (1993)] to prove the
stability of the feedback system.

5. TESTBED

We will use two testbeds to test the controller. The first
one is a C program that simulates the non-linear kinematic
model defined by equations (1), (2), and (3). It will be
sampled at f = 29H 2z because we assume that the robot
has a face down camera to get the distance to the circuit.
The circuit was a line painted on the floor. To make it more
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realistic, white noise is added. The dimensions of the robot
are the same of a Citron C3 Pluriel (L = 2.46m). The
sensor will be placed on the front of the car and centred
(i, = 3.41m and l; = 0) The simulated circuit is shown
in figure 6. The robot (car) will move with a variable and

L=42m

1st stretch: straight

R,=112m
4th stretch: bend

Ry=20m

2nd stretch: bend

Fig. 6. Circuit of the first testbed. The robot moves in the
direction of the arrow and starts from it

known velocity u; shown in figure 7. We may know the
value of the curvature ¢ according to the kind of test that
we want to do. This first simulation has the objective to
prove that the designed controller works well against its
model with adverse conditions (noise, variable velocity).

The second testbed is a modification of the autonomous
vehicle included in the examples of Webots. This example
is a realistic model of a BMW X3 that includes not only
kinematics but also dynamics. A face down camera was put
in the front center of the vehicle to get the distance to the
circuit, which is a painted line on the floor. For simplicity,
the car moves at 15K m/h (constant). In this case, we want
to test the controller in very adverse conditions. Therefore,
we will not know the value of the curvature ¢ and we will
add a deliberately strong noise to the camera acquisition
(especially in the curve) and an error in the measurements
of L and [;. With this simulation we will test the controller
in very adverse conditions with all kinds of errors in the
model and noise.

6. RESULTS

In this section we will evaluate the controller designed in
section 4 with the simulation results. In the first section
(section 6.1) we will use the first testbed defined in section
5, and in the section 6.2 we will use Webots as testbed.

6.1 Model simulation

We will show two kinds of simulations. In the first one,
we assume that we know the value of the curvature ¢, and

Welocity U,

u, (krndh)

=]
T
L

o
L

0 5 10 15 20 25 30 35 40
tirne (s)

Fig. 7. Velocity u; in circuit number one
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we calculate the controller using this information. In the
second, we assume that we ignore this value. We establish
that, during all the simulation, we are in a ¢ = 0 curve
zone, and we allow the integer action of the controller solve
this error.

In figure 8 we can show the steering action done for the
whole controller, and the obtained error (distance to the
curve) when the curvature is known.

Error

0.05

errar (m)

015 L i L
0

5 10 15 20 25 0 3B 40
time (s) !
+ Steeting
06
04t 1st stretch: straight i 2nd stretch: bend ardstretch: | ath stretch:

i straight | bend

steering phi(rad)
o
N

02 1 L L L L [ 1 Il
0 1

Fig. 8. Simulation knowing c¢: In the upper plot, the
evolution of the error is depicted. In the lower one
the steering is shown: ¢ (blue), ¢y (red) and A¢

(green)

In figure 9, the same variables are plotted but now ignoring
the value of the curvature of the curve.

Error
02 T
£
5 4
&
i i ‘ il N f
0 5 10 18:) 20 25, 30 35 40
time (s)
\ Steering
06 ]
? 04t 1st stretch: straight 3 2nd stretch: bend ;Zri:;‘r;ﬁh: é 4"“;;:;“’“
z : 3 i
= 02f : : //"’“"
£ m ;
@ ; )
e ! : !
02 L L - L Ll - L )
0 5 10 151 20 25 30 3B 40
time (s)
Fig. 9. Simulation ignoring c¢: In the upper plot, the

evolution of the error is depicted. In the lower one
the steering is shown: ¢ (blue), ¢y (red) and A¢
(green)

We can see that the maximum error obtained is lower
than 0.03m in the case of knowing the curvature and lower
than 0.1m if we do not know it. The error is very small
(compared to the size of the robot) and is stabilized on
zero even when the velocity u; change continuously to
30K m/h. The simulation results show that the controller
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extensively meet the requirements for the proposed appli-
cation, even in very closed curves (the smallest one has
a radius of 11.2m). The performance is also very good
without knowledge of the curvature, that means ¢;;, = 0
and the PID controller has to do all the control action
¢ = A¢. However it produces a peak in the error when
we ignore ¢, but the controller compensates it. The noisy
measurements do not seem to affect the performance of
the controller either.

6.2 Webots simulation

A graphic with the error and the steering given by the
simulation is shown in figure 10.

Error
05 -

error (m)
o

5 . L y L I

150 160 170 180 190 | 200 210
1 time (s) ;

Steering

05¢

straight

steering phi(rad)

05} i f : : i

3 B . g | ; ;
150 160 170 180 190 200 210
time (s)

Fig. 10. Simulation with Webots: In the upper figure, the
error. In the lower the steering: ¢ (blue), ¢y, (red)

and A¢ (green)

Now the error is bigger than before, because we included a
lot of intentional errors to put the controller to the test and
a very big noise (bigger in bend stretches). However, the
controller stabilizes the error in zero with a maximum peak
of 0.5m (it remains small compared with the size of the
robot). Therefore, the simulation demonstrates that the
control scheme designed along the paper works very well
even with a realistically simulated model with big noise,
dynamics and intentional errors.

7. EXTENSION

Throughout the paper, we have done some hypotheses
that must be clarified before conclusion. First of all, we
assume that the model of the robot is the one described
in equations (1), (2) and (3). This might not be real.
The system could have, for instance, steering dynamics.
This is not a problem. With the same design method,
we can identify a CTF (either LTV or LTI) that we can
connect in cascade with the robot model. The new RL,
may have new poles or zeros, and the new controller may
be different, but the design method is the same. Secondly,
we assume that I = 0 and the objective of the control
is dref = 0 = diin = 0. We can remove this hypothesis
at the expense of complicating the calculation. Also, if we
want to move the robot backwards (u; < 0), we have to
stabilize the system with other method (for example state
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feedback), because moving backwards puts a zero in the
positive real axis that with the classical control theory
cannot be stabilized.

8. CONCLUSION

We designed a control scheme based on linear techniques
with all their advantages (flexibility and wide knowledge),
but avoiding its disadvantages by using an adaptive struc-
ture. This adaptive structure is composed of a PID with
variable parameters calculated on-line; and a linearisation
point with a variable theoretical equation that comple-
ments the PID like a feed-forward control would do. This
controller is based on a linearisation of the kinematic
Frenet frame model of a car-like mobile robot. The ad-
equate performance of this controller was demonstrated
by two different kinds of simulations with intentional bad
conditions.
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