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Abstract: Linear systems controlled by a nonlinear version of the PI algorithm are under
study. The modified PI controller in question is known in the literature as the Super–Twisting
(STW) algorithm (see Levant (1993)), and it belongs to the family of second order sliding
mode controllers. The considered closed–loop system exhibits self–sustained stable oscillations
(chattering) when the relative degree of the linear plant is higher than one (see Boiko and
Fridman (2005)) and it is the task of the present paper to present a systematic yet simple
procedure for tuning the STW algorithm parameters in order to obtain pre–specified frequency
and magnitude of the resulting chattering oscillation. The proposed methodology is based on
the Describing Function (DF) approach. The approach is theoretically illustrated and verified
by means of, both, simulation analysis and experiments carried out by making references to a
DC motor.
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1. INTRODUCTION

PI controllers are widely used in many industrial control
systems mainly due to their simplicity, effectiveness and
transparency of implementation. Nevertheless, the result-
ing performance can be unsatisfactory in the presence
of strong nonlinearities and/or when non–constant set–
point/disturbance need to be tracked/rejected. To over-
come these limitations without loosing in simplicity of
implementation, a synergic use of PI and sliding mode
control (SMC) may be appropriate.

The main drawbacks of classical relay–based SMC (also
called “first–order” SMC, or 1–SMC) are principally re-
lated to the so–called chattering effect (Utkin et al.
(1999)), i.e. undesired high–frequency steady–state vibra-
tions affecting the variables of the plant. To mitigate the
chattering effect, a possible solution is the use of higher–
order sliding mode control algorithms (HOSM) (Bartolini
et al. (1998); Levant (2003)), a set of advanced algorithms
that constitute the core of modern SMC theory (Bartolini
et al. (2008)).

In this paper we focus our attention on one of the most
popular second order sliding mode algorithms known
as Super–Twisting algorithm (STW) (Levant (1993)).
Among the reasons for the popularity of the STW algo-
rithm, its similarity with the conventional PI, and the fact
that it gives rise to a continuous control law, are worth to
mention. Whenever applied to linear plants with relative
greater than one, STW controlled systems always exhibit
chattering (Boiko and Fridman (2005)) in the form of
periodic oscillations of the output variable.
We propose in this paper a procedure for selecting the

algorithm parameters in order to assign prescribed values
to the frequency and amplitude of chattering. The ability
to affect the frequency of the residual steady state oscil-
lations may be useful, for example, to mitigate resonant
behaviours.

In the literature there are two main approaches to chat-
tering analysis that provide an exact solution in terms of
magnitude and frequency of the periodic oscillation:

• time–domain analysis by PoincareMaps (see Gonçalves
et al. (2001));

• frequency domain techniques as Tsypikin Locus (see
Tsypkin (1984)), and LPRS Method (see Boiko
(2009)).

All these approaches require lengthy computations. There-
fore, the application of approximate analysis methods has
been found useful whenever the plant under analysis ful-
fill the filtering hypothesis (Atherton (1975)). Under this
hypothesis, the Described Function (DF) method is a well–
established approach. In fact it has already been used
to analyze periodic motions for both 1–SMC (Shtessel
and Lee (1996)) and second order SMC (2–SMC) systems
(Boiko and Fridman (2005); Boiko et al. (2004, 2006)), and
the results obtained via the use of exact techniques often
feature a satisfactory similarity with those obtained via
the approximate DF method (Boiko (2003)).

In this paper DF–based tools of analysis are exploited
for design purposes in the frequency domain in order to
provide effective tuning rules for chattering adjustment in
linear plants controlled by the STW algorithm.
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This paper is organized as follows sections: Section 2
and 3 present the STW algorithm and recall its DF–
Based analysis (Boiko and Fridman (2005)). Section 4
states the problem under investigation and presents the
tuning procedure for setting the parameters of the STW
algorithm in order to assign prescribed amplitude and
frequency to the periodic chattering motion. In Sections 5
and 6 the proposed tuning procedure is verified by means
of simulations and experimental tests. Section 7 provides
some concluding remarks and hints for next research.

2. CONVENTIONAL AND NONLINEAR PI
CONTROL FOR LTI PLANTS

Conventional Proportional–Integral (PI) controllers are
undoubtedly the most employed controllers in industry.
Main advantages of classical PIs are their simplicity, satis-
factory performance for “slow” processes, and the avail-
ability of effective automatic tuning rules, such as the
Ziegler–Nichols or Astrom–Hagglund methods (Astrom
and Hagglund (2005)). Internal model principle estab-
lishes their capability of providing the asymptotic rejection
of constant disturbances and zero steady–state error for
constant set–point signals. However, PI controllers may
behave unsatisfactorily in presence of strong nonlinearity
effects (i.e. friction, hysteresis, backlash) and/or rapidly
varying set–point and disturbance signals.

Here we shall investigate linear systems controlled by
means of a feedback algorithm which implements a nonlin-
ear version of a PI. The considered controller is known as
“Super–Twisting” (STW) Algorithm (see Levant (1993))
and it is described as follows

u(t) = u1(t) + u2(t) , (1)

u̇1 = −γ sign (σ) , u1 (0) = 0 , (2)

u2 = −λ | σ | 12 sign (σ) , (3)

where λ, γ are positive design parameters. It belongs
to the family of, so–called, Second Order Sliding Mode
controllers. A block scheme representing its structure is
depicted in Fig. 1. The similarity between the classical
PI controller and the nonlinear PI (1)–(3) is evident (see
Fig. 2) in that they both possess a static component (a
constant proportional gain, for the PI, and a nonlinear
gain with infinite slope at the origin for the nonlinear
PI) and an integral action (error integration for the PI,
and integration of the sign of the error variable for the
nonlinear PI).

The STW controller gives rise to a continuous non–
smooth control action which possesses significant robust-
ness properties against nonlinearities, uncertainties and
disturbances. In recent years it has became the most stud-
ied SMC algorithm and it has been applied to address
control, estimation and fault detection tasks for some
classes of linear and nonlinear processes (see Fridman et al.
(2007, 2008)).

Whenever applied to systems (possibly nonlinear) having
relative degree one, the STW algorithm provides:

• rejection of smooth disturbances of arbitrary shape;
• tracking of smooth references of arbitrary shape;
• finite–time convergence to the set–point.

Fig. 1. Block diagram of a linear plant with the Super–
Twisting Algorithm.

Fig. 2. Architecture Comparison between linear (left) and
nonlinear PI.

Fig. 3. Decomposition of the arbitrary relative degree plant
W (s).

Although the STW algorithm guarantees the finite–time
exact convergence for a rather limited class of plants
having input–output relative degree one, it was proved its
“practical stability” for a wider class of arbitrary relative
degree systems admitting a certain decomposition (see
Levant and Fridman (2010)). In particular, the following
theorem holds once the considered dynamics is formed
by the cascade of a stable actuator, of arbitrary relative
degree, and a relative degree one dynamics.

Theorem 1. Consider a LTI plant W (s) = Y (s)/U(s), ad-
mitting the decomposition shown in Fig. 3, where H(s) =
Z(s)/U(s) is an asymptotically stable dynamics with arbi-
trary relative degree, with the positive coefficient µ scaling
its poles as an equivalent time constant, and G(s) is of
relative degree one. Then, the feedback control system in
Fig. 1 provides the following steady–state condition

|σ| < O(µ2) . (4)

�

Theorem 1 follows from (Levant and Fridman (2010)),
Lemma 1. The motion within the O(µ2) boundary layer
(4), established in Theorem 1, proves to be periodic,
thereby amenable to be investigated by means of the DF
concept (see, e.g. Atherton (1975)).

3. SUPER–TWISTING ALGORITHM AND ITS DF
ANALYSIS

We consider a linear SISO system, described by the follow-
ing state–space representation which comprises principal
and parasitic dynamics:

{

ẋ(t) = Ax(t) +Bu(t), x ∈ Rn, u ∈ R
y(t) = Cx(t), y ∈ R

, (5)

where A, B, C are matrices of appropriate dimensions, x
is the state vector, u is the actuator input, and y the plant
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output. We shall use the plant description in the form of
transfer function as follows

W (s) =
Y (s)

U(s)
= C (sI −A)

−1
B . (6)

We assume that the plant transfer function satisfies the
filtering hypothesis property. Using the STW algorithm
(1)–(3), the control system under analysis can be repre-
sented in the form of the block diagram in Fig. 1 where
σ(t) = r(t) − y(t) is the error variable. The DF of the
nonlinear function (3) was derived in (Boiko and Fridman
(2005)) as follows:

N2 (ay) =
2λ

π
√
ay

∫ π

0

(sinψ)
3

2 dψ =
2λ

√
πay

Γ (1.25)

Γ (1.75)

≈ 1.1128
λ

√
ay

,

(7)

where ay is the oscillation amplitude of the error variable
σ, to be determined, and Γ(·) is the Euler’s Gamma
function. The DF of the nonlinear integral component (2)
can be written as follows:

N1 (ay, ω) =
4γ

πay

1

jω
, (8)

which is the cascade connection of an ideal relay (with
the DF equal to 4γ/πay (see Atherton (1975))), and an
integrator with the frequency response 1/jω. Taking into
account both control components in (1), the DF of the
STW algorithm (1)–(3) can be finally written as

N (ay, ω) = N1 (ay, ω) +N2 (ay)

=
4γ

πay

1

jω
+ 1.1128

λ
√
ay

.
(9)

Let us note that the DF of the STW algorithm depends
on, both, the amplitude ay and frequency ω of the periodic
solution.

In general, the parameters of the periodic limit cycle can
be approximately found via the solution of the following
complex equation

1 +W (jω) ·N (ay, ω) = 0 , (10)

so–called, harmonic balance (Atherton (1975)). The har-
monic balance equation (10) can be rewritten as

W (jω) = −N−1 (ay, ω) , (11)

and a periodic oscillation of frequency Ω and amplitude Ay

exists when an intersection between the Nyquist plot of the
plant W (jω) and the negative reciprocal DF N−1(Ay , ω)
occurs at ω = Ω. Thus, the parameters of the limit cycle
can be found via solution of (10) where the DF is given by
(9). The negative reciprocal of the DF (9) can be written
in explicit form as

− 1

N
= −0.8986

√
ay

λ
+ j1.0282 γ

ωλ2

1 + 1.3091
ay

(

γ

ωλ

)2
. (12)

It is of interest to plot the negative reciprocal of the DF
(12) in the complex plane. It depends on the two variables
ay and ω; which are both nonnegative by construction. It
is clear from (12) that with positive gains λ and γ the
locus is entirely contained in the lower–left quadrant of
the complex plane when the variables ay and ω vary from

Fig. 4. Plots of the negative reciprocal DF (12) for different
values of ω.

zero to infinity. In Fig. 4, the curves obtained for λ = 0.6
and γ = 0.8, some values ω = ωi, and by letting ay to vary
from 0 to ∞ are displayed.

3.1 Existence of the Periodic Solution

The harmonic balance (10) can be also expressed as

N (Ay,Ω) =W−1(jΩ) , (13)

which, considering (9), specializes to

4γ

πAy

1

jΩ
+ 1.1128

λ
√

Ay

= −W−1(jΩ) . (14)

Separating the complex equation (14) in its real and
imaginary parts it yields



















1.1128
λ

√

Ay

= −ReW−1(jΩ)

4γ

πΩ

1

Ay

= ImW−1(jΩ)

. (15)

Obtaining Ay from the first of (15) and substituting this
value in the second equation of (15), it yields

4γ

πΩ

1

ImW−1(jΩ)
−
(

1.1128λ

−ReW−1(jΩ)

)2

= 0 , (16)

which allows to compute the frequency Ω. Solution of (16)
cannot be derived in closed form, and a numerical, or
graphical, approach is mandatory.

Once obtained Ω , the amplitude of the periodic solution
can be expressed as

Ay =
4γ

πΩ

1

ImW−1(jΩ)
. (17)

As noticed in (Boiko and Fridman (2005)), a point of
intersection between the Nyquist plot of the plant and the
negative reciprocal of the STW DF (9) always exists if the
relative degree of the plant transfer function is higher than
one, and this point is located in the third quadrant of the
complex plane. From Fig. 4, it is also apparent that the
frequency of the periodic solution induced by the STW is
always lower than the frequency of the periodic motion for
the system controlled by the conventional relay.

The orbital asymptotic stability of the periodic solution
can be assessed using the Loeb Criterion (see Atherton
(1975); Gelb and Vander Velde (1968)), that is not men-
tioned here for the sake of brevity.
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4. PROBLEM FORMULATION AND PROPOSED
TUNING PROCEDURE

4.1 Problem Formulation

Consider the feedback control system in Fig. 1, where
the plant is modelled by an unknown transfer function
W (s) having relative degree greater than one. Given the
steady–state performance requirements in terms of desired
frequency Ωd and amplitude Ayd

of the chattering motion,
we aim to define a tuning procedure, based on the DF
method, devoted to derive constructive controller tuning
rules for the algorithm (1)–(3).

To begin with, let us substitute (12) into (11) and rewrite
the harmonic balance equation as

W (jω) = − c1
a1.5
y

λ

ay + c3
(

γ

ωλ

)2
− j

c2
ayγ

ωλ2

ay + c3
(

γ

ωλ

)2
, (18)

with c1 = 0.8986, c2 = 1.0282, c3 = 1.3091. Let

K1 (ω) =
γ

ω
, K2 (ω) =

γ

ωλ
. (19)

Multiplying both sides of (18) by γ/ω, we derive

K1 (ω)W (jω) = −
c1a

1.5
y K2 (ω)

ay + c3K2

2
(ω)

− j
c2ayK

2

2
(ω)

ay + c3K2

2
(ω)

.

(20)
Once considered the design requirements ay = Ayd

and
ω = Ωd, separating the complex equation (20) in its
magnitude and phase as follows

K1 (Ωd) |W (jΩd)| =
√

c2
1
A3

yd
K2 (Ωd) + c2

2
A2

yd
K2 (Ωd)

(Ayd
+ c3K2

2
(Ωd))

2

(21)

arg {W (jΩd)} = atan

{

c2K2 (Ωd)

c1
√

Ayd

}

(22)

we obtain a well–posed system of equations, where Kd
1
=

K1 (Ωd) and Kd
2
= K2 (Ωd) are the two unknowns. The

magnitude and phase of W (jω) at the desired chattering
frequency Ωd can be identified by a simple test on the
plant. Therefore, solving (21)–(22), and then considering
(19) with ω = Ωd, we derive the controller parameters λ
and γ that guarantee a steady–state periodic motion with
desired characteristics. Corresponding formulas are















γ = ΩdK
d
1

λ =
γ

ΩdKd
2

=
Kd

1

Kd
2

(23)

Direct solution of the nonlinear equations (21)–(22) can be
avoided. By following a graphical approach it is convenient
to refer to the curves in Fig. 5, where each curve represents
a specific instance of the right–hand side of (20) in the
complex plane, for different values of Ayd

, by letting K2

to vary from 0 to ∞. Drawing in the abacus a segment
connecting the origin of the complex plane and the point
P of the curve associated to Ayd

, with phase equal to
arg {W (jΩd)} (see Fig. 10), we can extrapolate the length
of the segment OP which corresponds to the right–hand
side of (21). Then, once known OP , we can compute Kd

1

and Kd
2
by the following relationship

Fig. 5. Level sets of the right–hand of (20) for different
values of ay and K2 ∈ (0,∞).























Kd
1
=

OP

|W (jΩd)|

Kd
2
=
c1
√

Ayd

c2
tan {arg {W (jΩd)}}

(24)

Remark 1. It is important to underline that the intersec-
tion between the Nyquist plot of W (jω) and −N−1(ay , ω)
always lies in the lower–left quadrant of the complex plane,
so the desired frequency of chattering oscillation Ωd must
satisfy the sector condition

Ω1 < Ωd < Ω2 (25)

where

arg {W (jΩ1)} =
π

2
, arg {W (jΩ2)} = π (26)

�

Remark 2. The right–hand side of (20) is independent of
the plant transfer function. Therefore the set of curves in
Fig. 5 represents an abacus, independent of the plant, too,
hence very useful to simplify the solution of (20).

�

4.2 Proposed Tuning Procedure

Given a low–pass plant with relative degree greater than
one, we can summarize the proposed procedure:

Procedure 1.

A. Let Ayd
and Ωd be the desired chattering character-

istics;
B. Evaluate by an harmonic response test on the plant

the quantities |W (jΩd)| and arg{W (jΩd)} and check
if π/2 < arg{W (jΩd)} < π, otherwise chose a
different value for Ωd and go back to step A;

C. Draw in the abacus a segment connecting the origin
and the point P of the curve ay = Ayd

with phase
equal to arg {W (jΩd)};

D. Use (23) to compute λ and γ.

5. SIMULATION RESULTS

In order to outline the proposed methodology, we consider
the cascade connection of a linear plant G(s) and a stable
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Fig. 6. Step response of the plantW (s) in closed–loop with
STW parameters λ = 5.0119, γ = 18.3575.

actuator H(s), such that the relative degree of W (s) =
H(s) ·G(s) is greater than one, i.e.:

G(s) =
s+ 1

s2 + s+ 1
, H(s) =

1

(µs+ 1)
2
,

W (s) = H(s) ·G(s) , µ = 1/50 .

(27)

Let us apply Procedure 1 to shape the steady–state perma-
nent oscillation of the closed–loop system with the STW
algorithm.

A. Let Ayd
= 0.05 and Ωd = 25 rad/sec;

B. By frequency response test we obtain:

|W (jΩd)| ≈ 0.032 , arg{W (jΩd)} ≈ −143.14 deg ;

C. Drawing the segment OP in the abacus until it
intersects the curve associated to ayd

(see Fig. 10),
we derive

OP =
√

(−0.01882)2 + (−0.01414)2 = 0.0235 ;

D. Using (24) and (19) obtain

λ = 5.0119 , γ = 18.3575 . (28)

In Fig. 6, some simulation results are shown. Signal y1(t)
represents the closed–loop unit–step response of the plant
(27) with control parameters (28). Signal y2(t) represent
the output signal obtained using the reduced value µ =
1/100 for the actuator time constant parameter. The
bottom left zoomed sub–plot confirms that the steady–
state chattering motion fulfills the given specification
of amplitude and frequency. The bottom right sub–plot
shows that the chattering amplitude ay is 4 times smaller,
according to Theorem 1. The achieved results fully agree
with the presented analysis.

6. EXPERIMENTAL RESULTS

The proposed method has been experimentally tested
with reference to the position control of a commercial
DC Motor. In Fig. 7 the experimental setup is shown.

As first step (Step A), the desidered frequency and mag-
nitude of the periodic oscillation were set as

Ayd
= 0.05 , Ωd = 50 rad/sec . (29)

Then, by an harmonic test (Step B), we have obtained the
values

|W (jΩd)| ≈ 0.0081 , arg{W (jΩd)} ≈ −138.7 deg .
(30)

Afterwards, by the abacus in Fig. 5 (Step C) we calculate

OP =
√

(−0.0195)2 + (−0.0171)2 = 0.0259 (31)

Fig. 7. Experimental set–up with FAULHABERr DC
Micromotor Series 3557 024 CS.

Fig. 8. Experimental step response of the DC–Motor in
closed–loop with λ = 18.64, γ = 159.99.

Fig. 9. Experimental step response of the DC–Motor in
closed–loop with λ = 20.05, γ = 223.99.

from which, (Step D) we obtain the designed gains for the
nonlinear PI (1)–(3)

λ = 18.64 , γ = 159.99 . (32)

In Fig. 8, the closed–loop unit–step response of the mo-
tor with control parameters (32) is displayed. It can be
checked that the actual amplitude and frequency of the
oscillation closely match the desired ones. A second ex-
periment has been made by evaluating the parameters
giving rise to a periodic oscillations having the same fre-
quency Ωd = 50 rad/sec and a different, bigger, amplitude
Ayd

= 0.07. By repeating the suggested tuning procedure,
the next controller parameters were obtained

λ = 20.05 , γ = 223.99 . (33)

The results of the corresponding experiment are shown in
the Fig. 9, which shows, again, an almost perfect matching
between the actual and expected characteristics of the
steady state oscillation.
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Fig. 10. Example of abacus utilization for the system W (s) (27).

7. CONCLUSIONS AND FUTURE WORKS

A describing function approach to controller tuning has
been presented, to be adopted for linear SISO plants driven
by a nonlinear PI controller. The main property of the sug-
gested tuning procedure is that it allows to set a–priori the
amplitude and the frequency of the self–sustained steady
state periodic oscillations that take place in this class of
system when the relative degree is higher than one. The
proposed procedure has been tested by means of computer
simulations and experiments. Among some interesting di-
rections for improving the present result, the analysis,
and shaping, of the transient oscillations is of special
interest to avoid possibly large transient overshoots. The
mathematical treatment presented in Boiko (2011) and the
“dynamic harmonic balance” could be a starting point for
generalizing the present procedure along that direction.
Additionally, strategies for the on–line adjustment of the
controller parameters could be devised within the present
line of investigation to achieve satisfactory transient and
steady state performance at the same time.
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