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Abstract: In this paper, a toolbox is presented for the parameter tuning of PID controllers
based on the Virtual Reference Feedback Tuning. The VRFT is a data-driven methodology that
uses only data to find the parameters of the controller. In order to add robustness to the design,
a test is proposed and implemented in the tool that use an approximation of the multiplicative
uncertainty in an “Internal Model Control” like framework to check if the controller found is

robustly stable.
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1. INTRODUCTION

Data-Driven control is a methodology that skips the mod-
elling step (fundamental in the so called model-based de-
sign) and find the parameters of the controller directly
using data taken directly from one or more experiments
on the plant. Several different methodologies have been
presented in the literature: the Iterative Feedback Tuning
(IFT) (Gevers, 2002), computes an unbiased gradient of a
performance index to improve iteratively the tuning of the
parameters of a reduced order discrete time controller. The
Correlation-based Tuning (CbT) (Karimi et al., 2005) is a
one-shot methodology that attempts to find the values of a
restricted order controller that minimizes the correlation
between the closed-loop error of the system (based in a
desired closed-loop behaviour) and the reference signal.
The Virtual Reference Feedback Tuning (VRFT) (Campi
et al., 2002) translates the model reference control problem
into an identification problem, being the controller the
transfer function to identify. The optimization used to find
the parameters of the controllers is based on some “virtual
signals” computed from a batch of data taken directly from
an open-loop experiment.

One drawback of data-driven control is that the “classical”
stability and robustness analysis cannot be performed,
since a model of the process is needed for those analysis.
Concepts like “phase margin” and “gain margin” for
example (Skogestad, 2003), are not directly applicable in
data-driven design.

One of the model-based control methods that introduces
the idea of robustness directly in the controller design stage
is the Internal Model Control (IMC) (Garcia and Morari,
1982; Morari and Zafirou, 1989). In this paper, the con-
junction of the VRFT methodology with the robustness
condition of IMC is presented, unifying the best of two
worlds and a MATLAB application is presented aimed to
be useful for educational purposes.

The issue of education on control (Kheir et al., 1996) and
how to take advantage of the new technologies (Antsaklis
et al., 1999) have been subject of several studies. It is
clear that students learn better when they test and try
different concepts on real plants or even using simulation
environments, having a direct experience with the concepts
(Bernstein, 1999) . For example in Dormido (2004) an
extensive analysis of the effect and advantages of the
web over the traditional laboratories is presented as well
as the different types of remote laboratories and the
technologies they are based on. Several interactive tools
have been presented in the literature, for example in
Guzman et al. (2008), where several modules programmed
using the software Sysquake are presented for the analysis
and design of PID controllers. Aliane (2008) presented a
tool for the analysis of linear system programmed using the
Visual Basic for Application support on Microsoft Excel
spreadsheets. The motivation of this application was to
provide teachers with tools that allow them to concentrate
on the subject rather than in the programming details at
the same time that the user is allowed to interactively see
the effects of the change in some of the parameters.

Not only the classical control theory have been tackled
for control purposes, some modern control techniques are
starting to be introduced in class and laboratories, as
for example the practices and laboratories presented in
Jurado et al. (2002). Even more, with the arrival of faster
Internet connections and more reliable technologies, it is
possible to provide real laboratories with remote access
to the students, as the case presented by Dormido et al.
(2008) and Fabregas et al. (2011). This kind of application
not only help the student for a better understanding of the
concepts but it allows a better planning and a wider access
to the university resources.

The objective of this paper is to present a toolbox aimed
to introduce data driven control techniques applied to PID
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Fig. 1. The VRFT set up. The dashed lines represent the
“virtual” part of the method.

controllers. This toolbox fully implements the design of
steps for PID tuning based on the virtual reference idea
in conjunction with the internal model control framework.
In section 2 a short overview on the VRFT is presented
while the IMC-VRFT version of the method is presented
in section 3. The toolbox is described in section 4.

2. VRFT OVERVIEW

The Virtual Reference Feedback Tuning (VRFT) is a
one-shot data-based method for the design of feedback
controllers. The original idea was presented in Campi et al.
(2002). The methodology can be explained as follows:
suppose that the controller belongs to the controller class
{C(2;0)} given by C(z;0) = BT(2)0, where B(2)

[B1 (2) - B (2)]" is a known vector of transfer functions,
and 0 = [0, 02 ~--9n]T is the vector of parameters.
The control objective is to minimize the model-reference
criterion given by:

non®) = (T pSerg ~ M) we)| o

where P(z) in the unknown plant model, M(z) is the
desired closed-loop response and W(z) is a frequency
weighting factor. The main idea of the method is that,
given a set of input-output data from the plant, taken in
open-loop, (i.e. u(t) and y(t) respectively), the designer
should be able to minimize equation (1), without a model
of the plant. This can be achieved by creating a “virtual”
signal constructed from the open-loop data. If the real
open-loop output (y(¢)) had been taken in closed-loop and
the closed-loop transfer function were M (z), one can find
a “virtual reference” 7(t) that, if applied to the closed loop
system, would yield y(t) as the output. If the output of the
plant is y(t), then the output of the controller should be
equal to u(t). This controller can be found by identifying
the transfer function which yields the output w(t) when
the input 7(¢t) — y(t) is applied to the input as depicted in
Fig. 1.

2

The original algorithm, as presented by the authors in
Campi et al. (2002), is given as follows: Given a set of
measured 1/O data {u(t),y(t)},—;  n

(1) Compute:
e avirtual reference 7(t) such that y(t) = M(2)7(t),
and
e the corresponding tracking error e(t) = 7(t) —y(t)
(2) Filter the signals e(t) and u(t) with a suitable filter
L(2):
er(t) = L(2)e(t)
ur(t) = L(z)u(t)

(3) Select the controller parameter vector, say, 9N, that
minimizes the following criterion:

WeB2.1

N
JVR - N Z C(z;0)er(t ))2 (2)
t=1
If C(z;0) = BT (2)0, the criterion (2) can be rewritten
" 1 & 2
t= 1
with o1, (t) = B(2)eL(t) and the parameter vector 6y
is given by

N
Oy = [Z er(t)er (t)T] D er®ur(t)  (4)
t=1 t=1

The authors, also showed that, the filter L(z) should be
the one that approximates the criterion (2) to (1). This
filter should accomplish:

|L(e™) M(e)[* | M ()] [W(e™) ]

where ®,, is the spectral density of u(t).

3. IMC-VRFT OVERVIEW

Internal Model Control (IMC) is a popular and well known
control method that incorporates the model of the process
directly into the controller Morari and Zafirou (1989). The
standard structure is depicted in Fig. 2. P(z) represents
the Plant, while P(z) is its model. Q(z) is the IMC
controller. In the absence of uncertainty, the control acts
as if it was in open-loop control for the reference tracking
but when a disturbance enters into the system, the same
controller acts as closed-loop for the disturbance rejection.
If Q(z) is designed as Q(z) = P(z)"'f(z) and P(z) =
P(z), the output ideally becomes

f(2))d (6)

y=flar+(01-
It is clear that, to have perfect model matching control
(in closed-loop, the desired dynamics are given by f(z)),
Q(z) must try to cancel the dynamics of the plant. This
characteristic leads to the well know property that an IMC
system would be nominally internally stable if Q(z) is
stable, in case the model is equal to the plant. Finding
a perfect model is rarely achievable and in such case, Q(2)
may not be possible to contain the inverse of this model
due to physical limitations or because the inverse of the
plant may lead to an unstable controller. In Morari and
Zafirou (1989) a two-step design is proposed for this kind
of controller:

(1) Solve the nominal performance criterion given, for
example, by
min || (1 — P(2)Q(z)) W(z)”p (7)
Q(2)
Where W (z) is a filter chosen to give more importance
in certain frequencies and |-, is a given norm that
defines the performance criterion. The optimal solu-
tion of this problem yields to a sensitivity function
given by S*(z) = 1 — P(2)Q(z) and the complemen-
tary sensitivity function given by M*(z) = P(2)Q(z),
that is, the response to a change in the reference is
as if it were in open loop, while the response to a
disturbance is in closed-loop.
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Fig. 2. Standard Structure of the IMC. P(z) represents
the plant model and Q(z) is the IMC controller. The
dashed line represents the virtual signal for the VRFT
procedure.

(2) To introduce robustness considerations, the comple-
mentary sensitivity has to be rolled off at high fre-
quencies, therefore, it is necessary to add a low pass
filter f(z) to the controller Q(z), to obtain the fi-
nal controller Q(z) = Q(2)f(z). Suppose that the
multiplicative uncertainty is bounded by a frequency
dependent function I, (w),

P(e?w) — P(ew _
Pe™) = PE™)| 7 (w)
P(e)
The closed-loop system is robustly stable if and only
if
1

= TP(e)Q () ()]

IMC control has become very popular because, finding
the controller and the conditions for robust stability can
be cast in a very simple form. As seen in (6), the Q(z)
controller just need to be set as the best approximation of
the inverse of the model multiplied by a filter that defines
the desired behaviour in closed-loop. In addition to this,
under certain conditions on the model of the plant, the
final controller (the combination of Q(z) and P(z)) can
be rewritten as a PID controller, allowing to use the IMC
method directly to tune this kind of controllers, which are
widely used in industry (Astrém and Hégglund, 2001).

£ ()]

Yw (8)

Having a good model and an approximation of the uncer-
tainty is vital for IMC. Since the model is an integral part
of the controller, the use of data-driven control is proposed
to jump from the data to the controller directly and to
used the same information to find an approximation of the
plant. The VRFT is the selected framework for this task,
given its flexibility to apply the “virtual signal” concept
into different structures.

3.1 The IMC-VRFT

For the case of IMC, in Fig. 2, the experimental setup for
VRFT is depicted. If the target complementary sensitivity
function is given by M(z), then the virtual reference 7(¢)

is computed as
7(t) = M~ (2)y(t) (9)
From Fig 2, it can be found that the ideal controller would
be given by
Qo(z) = M(2)P(2)7"!
Po(z) = M(2)Qo(2) ™"
where Py(2) is the ideal plant model that is derived from

the ideal controller. Note here the model is purely instru-
mental and defined from the controller. This is opposite as

(10)
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in IMC where the controller is directly derived from the
model. This basic idea leads to the following optimization
problem which gives the set of optimal parameters 8* (in
a least squares sense):
0* = arg min J(6)
0
N . (11)
J(0) =3 (uli) - Q= 0)7()
i=1
Once Q(z;0*) has been determined, it is easy to compute
the approximation of the process model of the plant from
(10):
P(2;,0%) = M(2)Q(z;0*)* (12)
It is important to note that P(z,6) is seen just as an
“instrumental model”, that results from the determination
of the optimal controller. This instrumental model is used
as part of the control loop and, as presented in the next
section, as the manner to describe a “nominal plant”. In
Data-Driven control, there is no nominal model of the
plant, therefore, to define a test to check if the controller is
robustly stable, it is necessary to approximate the plant by
this “instrumental model”. The filter for robust operation
presented in (8), is already included in Q(z,0*) since the
closed-loop behaviour is expected to be M(z), but it is
not possible to know if condition (8) is fulfilled just by
solving this optimization problem. It is therefore, desirable

to count with a data-based test to check if this condition
holds.

8.2 Robust Stability for the IMC-VRFT

When the closed-loop system is stable for all perturbed
plants around the nominal model up to the worst-case
model uncertainty, it is said to be robustly stable (Skoges-
tad and Postlethwaite, 2007). In Data Driven Control it
is difficult to find a controller that assures robust stability
of the plant since not even a nominal model is available
(in van Heusden et al. (2011) the stability problem is
addressed by adding some constraints in the frequency do-
main directly into the optimization problem). However, it
is possible to use (8) and the batch of input-output data, to
test if the controller is robustly stabilizing the plant, before
the actual controller is implemented, by approximating the
uncertainty function l,,(w) from the instrumental model
P(z;6%).

Using the results on Empirical Transfer Function Estimate
(ETFE) from Ljung (1999), given an input-output set of
N points of data {u(t),y(t)}, from a plant G(z) which
transfer function is assumed to be unknown, the estimate
of the frequency response is given by

A Jwy YN(W)
Gy () = Un(@) (13)
where Uy (w) and Yy (w) are given by
| X
Un(w) = Wi ; (u(t)e ")
N (14)

Vi) = 7= > (vt

The essential frequency points are given at w = 27k/N,
k=0,1,..., N — 1. Other points are obtained by interpo-
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Fig. 3. Graphical interpretation of the robust stability test.

lation. According to Ljung (1999), the ETFE is an asymp-
totically unbiased estimate of the transfer function at
increasingly (with N) many frequencies, but the variance
of the ETFE do not decrease as N increases. To tackled
this problem, the use of filtering windows is recommended
to smooth the ETFE.

Approzimation of l,(w) and the robust stability test If
the uncertainty bound [,,,(w) can be approximated using
the ETFE, it will be possible to perform a data-based test
to check Robust Stability using (8). In the case of the IMC-
VRFT, the assumption on the instrumental model P(z) is
that it is close enough to the real plant transfer function, in
order to left the “nominal” stability depending on Q(z): if
Q(2) is stable, the “nominal” closed-loop system is stable
given that the plant is stable. If the controller has been
found using the proposed approach, the filter f(z), is
assumed to be already included in Q(z) and (8) can be
rewritten as

P (e,0)Q (e, 0) n(w)| <1 (15)

or, if a “security” constant a > 0 is added to cope with
possible errors when approximating [,

‘ﬁ(eM,a*)Q(eﬂw,e*)z‘m(w)] <l-a (16)

A graphical interpretation of (16) can be seen in Fig. 3:
if at some point the dashed line falls below the solid line
(which represents the complementary sensitivity function
if the instrumental model is close enough to the transfer
function of the plant) it means one is trying to extend the
system beyond the uncertainty limits. At this point (16)
fails, and it is not possible to assure robust stability with
controller Q(z,6*) and given value of a.

To approximate (16), the frequency response of Q(z,6*)
and P(z, 6*) can be calculated using the results of the opti-
mization. [, (w) is approximated using the definition of the
multiplicative uncertainty and the ETFE approximation.
If the test fails, the designer has two options: it is possible
to increase the number of parameters of the controller or
to relax the closed-loop specification M (z). Once the new
controller is found, the test can be performed again to
check if the robust condition holds for the new setting.

3.8 Particular case for PID controllers

It is possible to directly find the parameters of PID
controllers using the IMCVRFT method. It is common
to set the desired closed-loop dynamics as a first order
transfer function:

(1—7)z71

M(z) = . (17)

1—72—
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Also the controller structure is already fixed as a PID
controller: PR )
a+ bz cz
()= 21 (18)
Then it is easy to find that for such particular case, the
structure of the IMC controller is given by
a+bzt 4 c27?
Q) = 1—7271
From (19), it is clear that Q(z) is linear in the parameters
and therefore, the optimization problem (11) can be solved
using least squares techniques. Also, once the parameters
of Q(z) are computed, both the feedback controller and
the instrumental model can be found at once. Then, the
robustness test presented above can be applied directly.

(19)

4. THE PID-IMCVRFT TOOLBOX

The main objective of this paper is to introduce a tool
that incorporates the data-driven methodology described
above. An snapshot of the interface of the tool is presented
in Fig. 4. The components are enumerated in the figure and
describe as follows:

(1) Selection of the input method for the data. It is
possible to select four different input-data sources:
e a variable from the workspace.
e a .csv or a .mat file.
e from a model that is simulated using Simulink.
e defining the transfer function of the plant in
discrete time, and simulated with a PRBS signal.

(2) Sampling time of the data. It is supposed that the
data is evenly sampled.

(3) The name of the matrix that contains the data if the
“Workspace data” option is chosen.

(4) The name of the .csv or .mat file that contains the
data, in case the “File data” option is chosen.

(5) The Simulink model that contains the experiment if
the “Simulink Model” option is chosen.

(6) In case a transfer function is selected as the data
input method, the numerator and denominator are
introduced using this text fields.

(7) Once the input option is selected the “Load Data”
button loads the data to the toolbox.

(8) Closed-loop selection. The value of 7 can be selected
here to select the constant time of the closed-loop.

(9) The “Find Controller” button computes the opti-

mization problem presented in section 3.1 as well as

the robustness test.

The controller, the data and the closed-loop speci-

fication can be exported to the workspace with the

“Export Controller” button.

The input data is plotted in these two graphics.

The parameter of the controller are presented to the

user within the same window of the toolbox.

The result of the robustness test is presented in this

graphs. The first graph shows the approximation of

the uncertainty while the second graph shows the
frequencies where the condition is violated.

One of the interesting characteristics of the toolbox is that
it is possible to load data from a variety of sources. If the
data is imported from the workspace, the input and output
data in column vector format have to be bounded in a
single matrix. The user is also allowed to directly import
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vectors that containing the input and output respectively.  Fig. 6. Using the toolbox with a second order plant.

All these cases are useful if the data has been taken from
a real plant or from other applications outside MATLAB.

The user is also able to define a Simulink model with
its own experiment. The only requisite is that the model
needs to have no inputs and two outputs: one that contains
the input data to the experiment and the other with the
corresponding output. It is important that the data is
sampled at a constant rate and therefore, precautions has
to be taken into account. The last input method is from
a used-defined transfer function. In this case, the input
data is considered to be a pseudo random binary signal
(PRBS) covering all the possible frequencies from zero to
the Nyquist frequency. In an interactive way, the user is
capable to vary the desired closed-loop response and to see
the effect on the controller parameters and the robustness
test automatically. Once the controllers are found, the user
is able to export the results directly to the workspace for
further tests and processing. An standard export windows
(Fig. 5) is open when the user clicks on the export button.

4.1 Ezample

A simple example is presented to show the operation of
the toolbox. A second degree plant is considered, which
transfer function is given by:

3.16271 +1.907272
P(z) =
14 0.01666z—1 4+ 0.25022—2
In this case, it is not possible to find the ideal controller
using a PID parametrization, and therefore certain error
is expected in the obtained closed-loop response. The
snapshot of the toolbox once the data is loaded and the

controller’s parameters are computed is given in Fig. 6.
The obtained controller is given by

~0.1454 — 0.06543z " + 0.05812 2
N 1—271

(20)

C(z) (21)

The comparison of the step response in closed-loop is given
in Fig. 7. As it can be seen, since it is not possible to obtain
the ideal controller with a PID structure, the obtained
closed-loop response is not exactly the same as the target
transfer function. According to the robustness test in Fig. 6
(down right in the user interface) the obtained controller is
robust in all the frequency range, since the condition is not
violated at any moment. If the user change the closed-loop
specification, automatically the controller’s parameters are
re-computed and the robustness test is updated. When the
closed loop specification is made faster, the uncertainty
increases, but it never violates the robust condition.
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Fig. 7. Response comparison for the second order system.
4.2 Future of the toolbox

The toolbox presented is capable to find the parameters
of a discrete time PID controller in an IMC framework
directly from data using the virtual reference concept.
However the toolbox is still a work in progress. Some of
the functionalities that are in the way of been added are:

e Support for two degrees of freedom PID controllers.

e Support for other controller structures and target
closed-loop functions orders.

e In the cases when the input data is found based on
a simulation (with Simulink or a transfer function),
the capability of testing the controller on closed-loop
should be added.

e To improve the interaction between the user and the
tool, it is expected to migrate the program from
MATLAB to Sysquake. This is also helpful in order
to distribute the tool top a wider range of user that
may not have a MATLAB license.

5. CONCLUSIONS

A tool for the tuning of discrete time PID controllers was
presented. The tuning methodology implemented was the
Virtual Reference Feedback Tuning within an “Internal
Model Control” like framework. To ensure robustness,
a test based on an approximation of the multiplicative
uncertainty was proposed and implemented in the tool.
This tool is a work in progress and is intended to be an
useful resource for teaching these new trends in control
theory.
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