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Abstract: Positioning an optical tweezer is a complex task due to the inherent nonlinear characteristic of 
the process and the multiple disturbances that affect its behavior. In this work, a nonlinear PID controller 
is proposed to address the challenges posed by this task. The control scheme is designed to minimize the 
effect of uncertainties and external forces that perturb the system. The stability of the closed loop system 
is analyzed by using standard Lypaunov theory. Some numerical simulations illustrate the robustness of 
the proposed control scheme under random thermal and constant perturbations. 
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1. INTRODUCTION 

The manipulation of microscopic or nanoscale particles is 
nowadays an important and challenging task in many 
biophysics applications where the optical trapping (OT) of 
single molecules, live cells, virus, bacterium, etc, plays a key 
role in the characterization of their mechanical and 
superficial structure Lee et. al. (2003), van Mameren (2002). 

Aguilar et. al. (2010) have proposed a simple control scheme 
for manipulating the OT system. This approach uses a 
Lyapunov analysis to design a nonlinear controller with a 
saturation function to perform the stabilization of the system, 
but it does not consider the effect of constant disturbances. 
Constant perturbations are produced by physical conditions 
given  by the molecule, medium or the tweezers themselves. 
We consider that the laser beam produce a potential field 
with a Gaussian distribution, Aguilar et. al. (2010), Lee et. al. 
(2003), Ibañez (2008). 

In this paper, we propose a nonlinear control scheme based 
on a nonlinear PI controller for manipulating the position of 
the particle. The control structure considers an integral action 
in order to deal with constant disturbances and changes in the 
desired final positions. The stability of the closed loop is 
analyzed by using the standard Lyapunov theory, Khalil 
(2002). 

The paper is organized as follows. In Section 2, the physical 
model based on the motion equations of the OT system is 
described. In Section 3, the control scheme is presented and 
the stability of the closed loop is analyzed. In Section 4, some 
numerical simulations of the open and closed loop systems, 
illustrate the effectiveness of the proposed control scheme. 
Finally, some conclusions and future work are summarized in 
section 5. 

 
Fig.1. OT system with the coordinates system. 

 

2. PHYSICAL MODEL OF AN OT SYSTEM 

There are many models to describe an OT system. In this 
work, we consider the one where the trapping is produced by 
a potential field with a Gaussian distribution [1], [2], [4]. Let 
x and y be the horizontal and vertical position of the particle, 
we consider that there is not movement in the z axis. The 
control action can be carried out by focusing the laser beam 
in the position (x0,y0). Fig.1 shows a simple scheme of the OT 
system where a particle has a radius r and mass m. 

The nonlinear model is then given by:  

,     (1) 

.    (2) 
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The left terms of these equations represent the inertial forces 
and the one produced by the potential field, where p0 is 
related to the intensity of the beam and a and b are 
geometrical parameters of the beam waist. In the right side 
term, the first term represents the drag force produced by the 
medium and γ > 0 is the damping force coefficient; which 
can be estimated using the Stokes equation as  with 
ρ the viscosity of the medium and r the radius of the particle. 
The second terms are random thermal forces known as 
Langevin forces, they have a zero mean value and a constant 
power spectrum [1], and they can be modeled by  

,        (3) 

with kb the Boltzman constant, T the absolute temperature, 
 and  two independent white noise signals, this 

noise is modelated, as reported by Ranaweera [1], with a 
bandwidth of 10 kHz. 

 

3. SYSTEM STABILIZATION 

First the open loop stability is analyzed and then the 
controller is designed. The closed loop stability is analyzed 
by using standard Lyapunov arguments. 

3.1  Open Loop Analysis 

First we make a change of variables to obtain a standard 
representation in the form  with   

 and 

,                 (4)                    

with ,  
and  a function containing the exponential  term. Now, it 
can clearly be seen that system (4) has three equilibrium 
points,  and . Reference 
[2] demonstrates that the first two equilibrium points are 
unstable. The third equilibrium point is stable and [2] also 
provides information about the maximum distance between 
the particle and potential well so that the laser will trap the 
particle. 

3.2  Control Design 

In this work, we consider not only system (4) but also the 
perturbation forces (3) and a constant disturbance signal. We 
note this force . Before proposing the 
control scheme the following characteristics of this system 
must be taken into consideration: 
 

• The nonlinear term in the original system is an 
exponential function bounded away from zero in a 
region of interest, and therefore it can be easily 
canceled using exact linearization [6]. 

• The magnitude of the constant perturbation is 
unknown and it can also appear in any moment; 
hence an integral action would be useful to suppress 
its effect. 
 

The proposed controller has the following structure: 

,   (5) 

where  are the tracking errors between 
the actual and the desired positions, are the 
integral part and  , are the gains of the 

controllers, and  is an estimation of . Therefore 
replacing the control action into (1) and (2) we obtain: 

,                     (6) 
,                     (7) 

where  and .  

3.3  Closed loop Analysis 

Under this control structure the closed loop dynamics of the 
coordinates are decoupled, and therefore the stability analysis 
will only consider just the x coordinate, since the same 
analysis can be carried out for y coordinate. 
Rewriting equation (6) by using the auxiliary variables 

 and  the closed loop equation 
becomes: 

,           (8) 

                              (9) 

where . The matrix A can designed to be 
Hurwitz matrix by choosing suitable values for the controller 
gains. In order to carry out an analysis of the perturbed 
system (8) we propose the use of a quadratic Lyapunov 
function , where P is a positive definite matrix 
that can be calculated from the Lyapunov equation 

. The time derivative of the Lyapunov 
function along the trajectories of the system (8) is the form: 

,                   (10) 
where the different  terms can be bounded as: 

,           (11) 

, (12) 

,            (13) 
then (10) can be bounded  as: 

,    (14) 
Thus  for all , and 
therefore the solution of the perturbed dynamic (8) is 
uniformly ultimately bounded with an ultimate bound  

                   (15) 
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Since the above controller is designed considering perfect 
knowledge of the exponential term, it is necessary to carry 
out an analysis concerning the robustness of the proposed 
controller under uncertain nonlinear term. The analysis again 
considers the x coordinate. In this case, the closed loop 
system (6) is:  

 (16) 

where  .  Writing (8) in matrix form: 
  ,                     (17) 

where, 

         (18) 

By performing the same analysis as in the nominal case, but 
assuming that this new perturbation term can be bounded as 
follows , and using the same Lyapunov 
function as before, the new condition for establishing the 
asymptotic stability of the error dynamic is: 

.                  (19) 
Thus given that (19) is satisfied, we have that  for all 

 , and therefore 
the solution of the perturbed dynamic (17) is uniformly 
ultimately bounded with an ultimate bound  

.          (20) 

The estimated ultimate bounds (15) and (20) can be quite 
conservative since the structure of the perturbation has not 
been considered. 
 

4.  SIMULATION RESULTS 

Numerical simulations are carried out by considering the 
control scheme proposed (8), and using the original system 
(4). The simulations are dived in three parts. The first one 
considers the open loop simulation of a particle with a given 
initial condition (near enough to the beam for being trapped 
by the potential field). The second one considers both open 
and closed loop simulations being the particle in the focus of 
the laser beam under random-thermal perturbation.  

Finally, the proposed control strategy is tested by considering 
a step change in the desired positions. In addition, a constant 
disturbance is also considered. Open and closed loop 
simulations are depicted in the same figures to gain insight 
about the effectiveness of the control strategy. Also, 
simulations are compared to the closed loop strategy 
proposed by Aguilar et. al. (2010), more details and  stability 
analysis of this strategy can be found in the reference. 

 In order to test the robustness of the controller some 
simulations considering changes in the viscosity of the 
medium and also mismatch in the nonlinear terms are 
included. 

 

 

The parameters used in the simulations are ,  

, , , γ was  
estimated using the Stokes equation and considering that the 
medium is water at ambient temperature (20(°C)) we have 
that , so .  
 The controller gains were set  and 

, and  since this choice maximizes the 
ratio [6]. These values give the following P 
matrix  

, (15) 

having eigenvalues . 

 In the first simulation example, the initial condition 
was  and .  

Fig.2 shows the particle trajectory as it is attracted to the 
origin where the center beam is. 

 

 

Fig.2. Open loop response of the OT system. 

The random thermal noise is simulated using (3) and the 
constant perturbation with amplitude proportional to the 
amplitude of the Langevin forces. Fig. 3 shows how the 
control strategy minimizes the effects of the disturbances 
acting over the system. 
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Fig.3. Open and closed loop simulation without 
constant perturbation and without position 
displacement. Closed loop (red) and open loop 
(blue). 
 

Finally the trajectories of the particle from  to 
a final position  are 
simulated. The simulation of the control strategy considers a 
step change of magnitude equal to the desired rest positions. 

 

 

Fig.4. Reference and constant disturbance signal. 

Fig.4 shows the step changes in both the reference and 
perturbation. 

In Fig.5, the proposed controller stays near the final 
position whereas the open loop does not follow the reference 
when the constant perturbation appears.  

 

 

 

Fig.5. Open and closed loop simulation with constant 
disturbance and position displacement. Closed loop (blue), 
closed Aguilar et. al. (2010) (red), and open loop (green). 

 
 

Some simulations considering changes in the viscosity of 
water, due to e.g. some temperature perturbation are also 
included. These changes are associated to changes in the 
value of ,  

 

 

Fig.6. Open and closed loop simulation with changes in the 
viscosity of water at 10 °C. Closed loop (blue), closed loop 
Aguilar et. al. (2010) (red), and open loop (green). 
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Fig.7. Open and closed loop simulation with changes in the 
viscosity of water at 30 °C. Closed loop (blue), closed loop 
Aguilar et. al. (2010) (red), and open loop (green). 

Fig.6 and 7 show that there is not a big difference between 
the nominal closed loop response and the one considering a 
different viscosity. Future work will address the problem 
tuning the controllers considering uncertainties in this 
parameter.  

Finally,  the robustness of the system  is tested when the 
exponential terms is partially known. In this example, the 
parameter a and b of the exponential function in the 
controller law are considered to have the following values 

.  The same control strategy is used this 
time. The results, Fig. 8, show that the stability is preserved.  

 

 
Fig.8. Open and closed loop simulation with no exact 
linearization performed by the controller. Closed loop (red) 
and open loop (blue). 

 

6. CONCLUSIONS 

In this work, a simple nonlinear PI control scheme for OT 
systems has been proposed to deal with the problem of 
constant disturbances, stationary reference tracking and 
changes in parameters. Standard Lyapunov theory shows that 
this approach provides stable closed loop behaviour. 
Simulation results illustrate its capabilities to deal with 
random thermal and constants perturbations produced by the 
medium or the particle per se.  These results also show the 
big difference between the open and closed loop responses 
when a nonlinear PI controller is used.  Further work is 
underway to establish tighter ultimate bounds and develop 
control design procedures taking into account uncertainties 
and bounded control signals. 
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