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Abstract: Optimal pole assignment minimizing the spectral abscissa when algebraic control of linear 
time-invariant time delay systems (LTI-TDS) is focused in this paper. We concentrate on algebraic 
controller design approach in the RMS ring resulting in delayed controllers as well. In the case of unstable 
delayed plants, the use a simple feedback loop results in a characteristic quasipolynomial instead of 
polynomial is obtained which means that the closed loop has an infinite spectrum. Thus, it is not possible 
to place all feedback poles to the prescribed positions exactly by a finite number of free controller 
parameters. The pole placement problem is translated to the minimization of the spectral abscissa which 
is a nonsmooth nonconvex function of free parameters in many cases. We initially solve the problem via 
standard quasi-continuous shifting algorithm followed by a comparative utilization of three iterative 
optimization algorithms; namely, Nelder-Mead algorithm, Extended Gradient Sampling Algorithm and 
Self-Organizing Migration Algorithm. Simulation control of an unstable LTI-TDS - the roller skater on 
the swaying bow - serves as an illustrative example for the algebraic control with the spectral abscissa 
minimization. 

Keywords: Algebraic approaches, Time delay, Pole assignment, Parameters optimization, Minimization, 
Numerical methods.

1. INTRODUCTION 

Expedient control of linear time-invariant time delay systems 
(LTI-TDS) has been a challenging task in control theory for 
decades, which is apparent from several books, conferences 
and journal publications dedicated to this topic, see e.g. 
Byrnes et al. (1984), Górecki et al. (1989), Loiseau (2000), 
Richard (2003), Partington and Bonet (2004), Michiels and 
Vyhlídal (2005), Michiels et al. (2010), Vyhlídal et al. 
(2010), Peka  and Prokop (2011a), etc. A modern way how to 
cope with the problem, among many others, is based on 
algebraic parlance and tools like rings and linear equations. 
Concerning an input-output description of single-input 
single-output (SISO) systems, a transfer function 
representation in the form of quasipolynomial fractions is not 
suitable for controller design. 

A possibility is to introduce so called pseudopolynomials, 
Loiseau (2000), or a quasipolynomial fraction (meromorphic) 
function representation can be extended to any type of the 
fractional description, Ku era (1993). In order to meet natural 
requirements of asymptotical stability and controller 
properness (realizability), one may introduce the ring of 
stable and proper quasipolynomial (RQ) meromorphic 
functions (RMS), see Zítek and Ku era (2003), Peka  and 
Prokop (2011b). Originally, the ring was developed for 
retarded systems only; however, the conception can be easily 
extended to neutral ones, Hale and Verduyn Lunel (1993). 

Control design in this ring employing the Bézout identity to 
along with the Youla-Ku era parameterization yields an 
infinite-dimensional feedback system, in the case of an 

unstable controlled plant in a simple feedback loop. In other 
words, a characteristic quasipolynomial instead of a 
polynomial is obtained which decides about the stability (in 
most cases) as usual for finite-dimensional systems. 

A natural task regarding controller parameters tuning, 
assignment of all feedback poles to the prescribed positions 
exactly by a finite number of free controller parameters, is 
hence unsolvable. We can place exactly as many poles 
(including their multiplicities) as free controller parameters 
are only, see e.g. Zítek and Vyhlídal (2008). Alternatively, it 
is possible to place some dominant poles and move the rest of 
the spectrum to the left, Michiels et al. (2010), Peka  and 
Prokop (2011c). Or, which is the aim of this paper, to 
translate the pole placement problem into the minimization of 
the spectral abscissa which is a nonsmooth nonconvex 
function of free parameters in many cases, Michiels et al. 
(2002), Michiels and Vyhlídal (2005), Vanbiervliet et al. 
(2008). 

In this contribution, we originally combine the algebraic 
controller design for an unstable LTI-TDS determining the 
controller structure with the (quasi)optimal poles shifting. We 
initially solve the tuning problem via standard quasi-
continuous shifting algorithm (QCSA), see Michiels et al. 
(2002), followed by a comparative utilization of three 
iterative optimization algorithms; namely, Gradient Sampling 
Algorithm (GSA), Burke et al. (2005), Nelder-Mead 
algorithm (NM), Nelder and Mead (1965), and Self-
Organizing Migration Algorithm (SOMA), Zelinka (2004). 
The last two enumerated methods have not been used while 
solving the task yet. 
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The correctness and usability of the designed controller and 
parameters optimization via the spectral abscissa 
minimization are tested on a simulation control of the 
unstable LTI-TDS - the roller skater on the controller 
swaying bow, Zítek et al. (2008).  

2. CONTROLLER DESIGN IN RMS RING 

As we are focused on Laplace transform models, they are 
subjected below. A general case of non-commensurate or 
rationally unapproximated delays results in a fraction of 
quasipolynomials ,  as follows sa sb

sa
sbsG  (1) 

where a general quasipolynomial has the form 
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If  holds for the denominator 

quasipolynomial, a neutral system is given; otherwise, the 
system is retarded. Note that retarded systems only are 
considered in this paper; however, ring definition and 
controller design are applicable for a neutral case as well. 

nh

j
njnj sx

1
constantexp

However, a meromorphic (i.e. quasipolynomial fraction) 
transfer function representations are not suitable in order to 
satisfy some basic control requirements, e.g. controller 
feasibility, feedback  stability, etc., see Loiseau (2000). 
Rather more general approaches, Vidyasagar (1985), Ku era 
(1993) utilize a field of fractions where a transfer function is 
expressed as a ratio of two coprime elements of a suitable 
ring.  

H

The ring of stable and proper RQ-meromorphic functions 
(RMS) is one of those powerful algebraic tools. Since the 
original definition of RMS in Zítek and Ku era (2003) does 
not constitute a ring, some minor changes in the definition 
were made in Peka  and Prokop (2009), Peka  (2011c). A 
term RsT MS ring is represented by a proper ratio of two 
quasipolynomials  where  is of degree n and 

 can be factorized as  
sxsy / sx

sy

ssysy exp~  (3) 

where sy~  is a quasipolynomial of degree l and  0. Note 
that the degree of a quasipolynomial means its highest s-
power.  is analytic and bounded in , particularly, 
there is no pole s

sT

0 such that . Thus, it lies in the 

space ( ) providing the finite norm defined as 

0Re 0s

H

0Re:sup: ssTT  (4) 

It is said that  is stable, Partington and Bonet (2004). 
Notice, for instance, that  having no pole in the right-
half complex plane but with a sequence of poles with real 
part converging to zero can be H

sT H
sT

 unstable due to an 

unbounded gain at the imaginary axis. Moreover, sT  is also 
stable in the strong sense, see details in Hale and Verduyn 
Lunel (1993), which means that 

1
1

nh

j
njx  (5) 

holds for sx . In addition, the ratio is proper, i.e. l n. More 
precisely, there exists a real number R > 0 for which holds 
that 

sT
Rss ,0Re

sup  (6) 

Hence, factorize (1) as 

MSsBsA
sA
sBsG R,,  (7) 

The ratio is Bézout coprime, i.e. there is non-trivial (non-
unit) common factor of both elements, and moreover it holds 
that 

0,inf
0Re

sBsA
s

 (8) 

A plant must be formally stable, see details in Loiseau et al. 
(2002). 

Controller design in  has been presented many times, 
e.g. in Peka  and Prokop (2011a, b, c), therefore, and with 
regard to the limited space here, a brief overview of the 
procedure is given only. 

MSR

Consider the well-known simple feedback loop. If a 
controller has the following transfer function 

MSR RsPsQ
sP
sQsG ,,  (9) 

the closed-loop asymptotic stability is given by the solution 
of the Bézout identity 

1sQsBsPsA  (10) 

The solution exists since whenever the plant is formally 
stable, the ring constitutes a Bézout domain. A particular 
stabilizing solution of (10), say , can be then 
parameterized as 

sQsP 00 ,

sZsAsQsQsZsBsPsP 00 ,0  (11) 

where MSsZ R .

Given reference and load disturbance signals expressed by 

MSDD
D

D

MSWW
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RsFsH
sF
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asymptotic reference tracking and load disturbance 
attenuation are solved by the suitable choice of sZ  in (11) 
so that both sFW  and  divide . Some details 
about the divisibility in  can be found e.g. in Peka  and 
Prokop (2009, 2011c). 

sFD sP

MSR
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3. SPECTRAL ABSCISSA MINIMIZATION FOR 
RETARDED LTI-TDS 

The presented controller design in , using a simple 
feedback loop for an unstable LTI-TDS controlled plant, 
yields a characteristic quasipolynomial instead of polynomial, 
i.e. the closed loop system is infinite-dimensional having the 
infinite spectrum. Similarly as for delayless systems, the 
characteristic quasipolynomial decides about asymptotic 
stability, except cases of distributed delays where zeros of the 
quasipolynomial do not coincide with system poles. Pole 
assignment philosophy, which places closed-loop poles to the 
prescribed positions, can not be adopted here as for finite-
dimensional selectable (free) parameters. A possibility is to 
optimize the whole spectrum so that the right-most pole is 
moved to the left as much as possible. 

MSR

Define the spectral abscissa which agrees with the objective 
function for retarded LTI-TDS. For neutral systems, some 
additional conditions due to strong stability must be added, 
the reader is referred to Vyhlídal et al. (2010) for details.  

Let the controller obtained by the algebraic approach in 
be with k selectable parameters 

MSR

k,...,, 21 . The 
spectral abscissa function, , is defined as follows 

isRemax  (13) 

where  are system poles and is  is strictly negative, see 
e.g. Vanderbliert et al. (2008), Vyhlídal et al. (2010). The 
objective is to solve the optimization problem 

minmin  (14) 

The question is why a complex optimization algorithm ought 
to be used instead of a standard one, say, the well known 
steepest descent (gradient) algorithm. Reason lie in some 
spectral abscissa function properties, namely  is non-
convex, i.e. it may have multiple local minima, it is non-
smooth w.r.t. parameter changes in points where are more the 
one real poles or conjugate pairs with the maximum real part 
Michiels et al. (2002), Vanderbliert et al. (2008) – and thus 
not differentiable at these points, and the function is non-
Lipschitz, for example, at points where the maximum real 
part has multiplicity greater than one, Burke et al. (2005). It 
is clear that with such behaviour the global minimum is hard 
to find, and many optimization algorithms will converge to a 
local minimum of the objective function . However, it is 
assumed that the spectral abscissa is differentiable almost 
everywhere. 

Due to the limited space, utilized minimization techniques are 
described very briefly and the reader is referred to the 
literature for more details.  

3.1  Quasi-Continuous Shifting Algorithm (QCSA) 

QCSA for retarded systems was introduced in Michiels et al. 
(2002) and it was extended e.g. in Michiels and Vyhlídal 
(2005), Michiels et al. (2010). The algorithm can be 
described as follows. 

Algorithm 1 (QCSA).
Input: Objective function .
Step 1: Set termination parameters and the number of move 
(controlled) poles 1m .
Step 2: Compute the right-most poles, e.g. using 
quasipolynomial mapping based rootfinder (QPMR), 
Vyhlídal and Zítek (2003). 
Step 3: Compute the sensitivity of  right-most poles w.r.t. 
changes in . (Sensitivity matrix) 

m

Step 4: Move m  right-most poles to the left-half plane by 
applying small changes in  using the sensitivity matrix. 
Step 5: If necessary, increase m . Stop when the available 
degrees of freedom in the controller do not allow to further 
reduce ; otherwise, go to Step 2. 
Output: Values of .

3.2  Gradient Sampling Algorithm (GSA) 

The original algorithm, Burke et al. (2005), and its 
modifications, Vanbliervliet et al. (2008), Vyhlídal et al. 
(2010), are essentially extensions of the well-known steepest 
descent method. The basic difference lies in the computation 
of the non-smooth direction where EGSA requires a 
numerical estimation of the gradient, even in points where the 
objective function is not differentiable. It is however 
expected that  is differentiable almost everywhere. The 
basic steps of EGSA can be given as follows. 

Algorithm 2 (GSA).
Input: Objective function .
Step 1: Initialize a starting point arbitrarily and set control 
and termination parameters. 

0

Step 2: Choose 1k  points near by . Compute the Clarke 
subdifferential and the (non-smooth) steepest descent 
direction. If the norm of the direction is very small, then 
terminate the algorithm. 

0

Step 3: Calculate the step length along the direction from 
Step 2. If it fails choose a substitute direction. If all possible 
directions fail, stop. 
Step 4: Update the current position to  and go to Step 2. i 1i

Output: The best position and its function value. 

3.3  Nelder-Mead Algorithm (NM) 

The NM algorithm belonging to the class of comparative 
(direct search) algorithms was originally published in Nelder 
and Mead (1965). The method does not require derivatives of 
the objective function and thus it is suitable for non-smooth 
functions. The method typically requires only one or two 
function evaluations per iteration, which is useful especially 
in applications where each function evaluation is time-
consuming; however, it can require an enormous amount of 
iterations to obtain a significant improvement in .

Algorithm 3 (NM).
Input: Objective function .
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Step 1: Construct the initial working simplex S, set 
transformation and termination parameters. 
Step 2: Calculate the termination test information. If the test 
is satisfied, stop the algorithm. 
Step 3: Order simplex vertices as the worst, second worst and 
the best one. 
Step 4: Calculate the central point and reflex the worst vertex. 
If the reflection is successful, accept the reflected point in the 
new working simplex and go to Step 3. 
Step 5: Try to use contraction or expansion. If this succeeds, 
the accepted point becomes the new vertex; otherwise, shrink 
the simplex towards the best vertex. Go to Step 3. 
Output: The best vertex and its function value. 

3.4  Self-Organizing Migration Algorithm (SOMA) 

SOMA is ranked among genetic algorithms, dealing with 
populations, see e.g. Zelinka (2004). Population specimens 
cooperate while searching the best solution and, 
simultaneously, each of them tries to be a leader. They move 
to each other and the searching is finished when all 
specimens are localized on a small area. The method 
converges very fast; however, the number of function 
evaluations in every iteration can be very high. The main 
steps of the basic algorithm strategy called “All to One” can 
be formulated as follows. 

Algorithm 4 (SOMA).
Input: Objective function. 
Step 1: Set control and termination parameters. Generate a 
population based on a selected prototypal specimen. 
Step 2: Find the best specimen (leader), i.e. that with the 
minimal function value. 
Step 3: Move all other specimens towards the leader and 
evaluate their function values in each step. 
Step 4: Select the new population and test the minimal 
divergence of the population. If it succeeds, stop; otherwise, 
go to Step 2. 
Output: The leader and its function value. 

4. UNSTABLE LTI-TDS PLANT – A STUDY CASE 

The aim of this section is to demonstrate the controller design 
in  followed by the spectral abscissa minimization using 
a real-life unstable LTI-TDS, namely a model of the roller 
skater on a controlled swaying bow, Zítek et al. (2008), see 
Fig. 1. 

MSR

Fig. 1. Roller skater on a controlled swaying bow. 

In Zítek et al. (2008) it has been stated that the transfer 
function of the plant reads 

sass
sb

sU
sYsG

exp
exp

22  (15) 

where ty is the skater’s deviation from the desired position, 
tu  expresses the slope angle of a bow caused by force P,

delays ,  means the skater’s and servo latencies, 
respectively, and b, a are real parameters. Skater controls the 
servo driving by remote signals into servo electronics. As 
presented in the literature, b = 0.2, a = 1, 3.0 s, 1.0 s.

4.1  Controller design

Let the reference signal and load disturbance be step-wise 
functions with Laplace forms 
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respectively, where w0, d0 ,  and smW smW  are 
arbitrary stable (retarded) (quasi)polynomials of degree one 
and sHW , sH D , sFW , .sFD MR S

Moreover, factorize (15) as 
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where  is a selectable real parameter. Using e.g. the 
extended Euclidean algorithm, a stabilizing particular 
solution of (10) reads 

00m

01
2

2
3

301
2

2
322

4
001

2
2

3

0

01
2

2
3

301
2

2
322

4
001

2
2

3
3

0

expexp

expexp

qsqsqsqsbpspspssass
mspspsps

sP
qsqsqsqsbpspspssass

msqsqsqsq

sQ

 (18) 
where p2, p1, p0, q3, q2, q1, q0  are free controller 
parameters. It has been shown by simulations (not 
demonstrated here due to the limited space) that a fewer 
number of free parameters introduced by the Euclidean 
algorithm in (18) do not give a stabilizable feedback by 
numerical algorithms described above, i.e. the spectral 
abscissa can not be further reduced so that 0 .

If sZ  in (11) is chosen as 
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where  is selected as 0z

b
mpz

4
00

0  (19) 

then  is in a simple form and, in particular, both sP sFW

and  divide . Then the controller transfer function 
and the characteristic quasipolynomial, respectively, are 
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smpmspspspsb
sassmpmsqsqsqsqb

sP
sQsGR

exp
exp

4
00

4
001

2
2

3

224
00

4
001

2
2

3
3

 (20) 

01
2

2
3

301
2

2
322

4
0

expexp qsqsqsqsbpspspssass

mssm

 (21) 
To cancel the impact of the quadruple real pole 01 ms  in 
(21), the assignment of which is trivial, it must hold that 

0m , and hence the aim is to minimize  of the 
quasipolynomial factor with seven unknown parameters. 

4.2  Spectral abscissa minimization

Let the minimization be started from  with 
QCSA as the initial global optimization algorithm. Contrary 
to the original paper, Michiels et al. (2002), whenever a 
bunch of dominant roots secedes from the rest of the 
spectrum and the number of currently controlled roots is 
higher then the number of seceded ones, the number of 
controlled roots decreases so that only of seceded roots are 
controlled. The evolution of dominant poles is displayed in 
Fig. 2 (controlled ones are in bold). 
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Iteration [-]

R
e 

s i

Fig. 2. Evolution of real parts of dominant roots of (21) using 
QCSA. 

It is obvious from Fig. 2 that QCSA can improve  and 
the trend is seemed to be continued. Thus, try to test the other 
optimization methods from the point . The results are 
compared in Fig. 3 where the time range instead of iterations 
is chosen since, in Matlab, NM is approximately 8x faster 
then GSA and 70x faster then SOMA and comparable with 
QCSA (measured by the duration of an iteration step). A high 
time consumption of SOMA is given by an enormous number 
of pole locations evaluations via QPMR. 

2400

0 200 400 600 800
-0.63

-0.62

-0.61

-0.6

-0.59

-0.58

-0.57

Calculation time [-]

(
)

NM
GSA
SOMA

Fig. 3. Comparison of evolutions of  using NM, GSA 
and SOMA in time range. 

Control responses for the result from NM, i.e. 

T]0.51339,5.24605,161.17249,148.61548,27.59276,9.83811,5.44288[
 (22) 
when 1.0td  enters at  are displayed in Fig. 4. 100t

0 50 100 150
-10

-5

0

5

10

15

Time [s]

w
( t)

, y
( t)

w(t)
y(t), m = 0.5
y(t), m = 2

0 50 100 150
-2000

0

2000

4000

6000

8000

10000

12000

14000

Time [s]

u(
t)

u(t), m = 0.5
u(t), m = 2

Fig. 4. Control responses for the NM algorithm result. 

6. CONCLUSIONS 

An original combination of algebraic controller design for 
unstable LTI-TDS in  ring with the spectral abscissa 
minimization, as a controller tuning task, using four iteration 
algorithms has been presented in this paper. 

MSR

First, the ring definition followed by basic controller design 
steps and principles has been introduced. Then, we have 
provided a brief overview of utilized minimization 
techniques. Finally, the whole methodology with the 
numerical algorithms comparison has been tested on an 

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 ThB1.1



attractive model of the roller skater on a controlled swaying 
bow. 

Simulation experiments have proved the usability of a 
standard QCSA for global  optimization. With regard to 
other algorithms, the best result together with a short 
calculation time due to the small number of cost function 
evaluations have been given by NM algorithm. SOMA has 
provided good comparable results, yet with rather long 
calculation time. On the other hand, our test has not verified 
the usability of GSA which has though provided a fast 
spectral abscissa improvement, yet not followed by any 
significantly better evolution. The three last mentioned 
algorithms can be used rather for a local minimization. 
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