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Abstract: This paper addresses closed-loop stability analysis of PID controlled local model
networks. The proposed method allows to investigate exponential or asymptotic stability of the
closed-loop system. For this purpose a common quadratic Lyapunov function is used as stability
criterion. Due to the fact that the Lyapunov approach requires a state-space model a suitable
closed-loop state-space system with integration of the controller parameters is introduced. An
example demonstrates the effectiveness of the proposed method.
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1. INTRODUCTION

For nonlinear systems model-based controller design is a
well established approach. For this purpose local model
networks (LMN) from the family of multiple-model ap-
proaches (e.g. Murray-Smith and Johansen (1997)) offer a
versatile structure. These model architectures interpolate
between different local models, each valid in a certain
operating regime. Each operating regime represents a sim-
ple model, e.g. a linear regression model, where the local
dynamics are usually defined as transfer functions. Due to
the transparency of the LMN structure the incorporation
of prior (physical) knowledge is easily possible. When
controllers are designed for LMNs closed-loop stability is a
key issue. Basically, the global closed-loop may become un-
stable even if all local closed-loops are stable, Feng (2006).
For open-loop and closed-loop systems with a state-space
controller common criteria are based on Lyapunov’s direct
method. These criteria investigate asymptotic or expo-
nential stability, respectively, and result in linear matrix
inequalities (LMIs), (e.g. Feng (2006, 2010); Kim and
Lee (2000); Precup and Tomescu (2009)). For PID con-
trolled LMNs common criteria investigate bounded input
- bounded output (BIBO) stability by using the passivity
theorem (e.g. Sio and Lee (1998); Jia et al. (2006)) or the
small gain theorem (e.g. Ding et al. (2003); Mohan and
Sinha (2008)). The main disadvantage of BIBO stability
is that it permits limit cycles and thus it is less meaningful
than asymptotic or exponential stability.
The main contribution of this paper is the closed-loop
stability analysis of LMNs with PID controllers. For this
purpose a novel approach is presented. Due to the fact
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that both the local dynamics and the PID controller are
usually defined as transfer functions and the stability
criteria require state-space models, the closed-loop, which
consists of LMN and PID controller, is transformed into a
suitable state-space model. The used stability criterion is
taken from Kim and Lee (2000), adapted for the considered
closed-loop system and extended by a decay rate to provide
exponential stability as well as asymptotic stability.
This paper is organized as follows: The architecture of local
model networks is briefly described in section 2. The PID
controller for LMNs is introduced in section 3. In section 4
the transformation as well as the state-space model of the
closed-loop control system is described. Section 5 addresses
stability and the basic concept of Lyapunov stability as
well as the used closed-loop stability criterion. In section
6 the effectiveness of the proposed method is shown by
means of two different PID controllers for the same LMN.
The paper is concluded by some remarks in section 7.

2. LOCAL MODEL NETWORKS

The architecture of dynamic local model networks is
depicted in Fig. 1. First, an ordered set for the indices
of the local models is defined:

I = (i ∈ N|1 ≤ i ≤ I) (1)

where I denotes the number of local linear models. Local
model networks have an input vector r(k) with past inputs
and outputs according to Fig. 1:

rT (k) = [u(k − 1) . . . u(k −m)

ŷ(k − 1) . . . ŷ(k − n)] , rT (k) ∈ R
1×O (2)

where m denotes the numerator order and n denotes the
system order. All local model outputs

ŷi(k) = rT (k)θi (3)
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Fig. 1. Architecture of a local model network with external
dynamics

with the local parameter vectors

θi =
[

b
(i)
1 . . . b(i)m a

(i)
1 . . . a(i)n

]T

, θi ∈ R
O×1 (4)

are used subsequently to form the global model output
ŷ(k) by weighted aggregation, see Fig. 1:

ŷ(k) =
∑

I

Φi(x̃(k))ŷi(k), (5)

where the validity functions Φi are constrained to form a
partition of unity:

∑

I

Φi(x̃(k)) = 1, ∀k ∈ N
+ (6)

0 ≤ Φi(x̃(k)) ≤ 1, ∀i ∈ I, ∀k ∈ N
+. (7)

From Fig. 1 it becomes obvious that the input vector x̃(k)
for the validity functions Φi, which lies in the so-called
partition space, can be chosen differently to the input
vector x for the local models. This is an important feature
of LMN.

3. PID-CONTROLLER FOR LOCAL MODEL
NETWORKS

The discrete-time PID control law is as follows, Ogata
(2006):

u(k) = KP

[

e(k) +
TS

TN

k−1∑

i=0

e(i)+

+
TV

TS

(e(k)− e(k − 1))

]

(8)

where TS denotes the sampling time. The control error is

e(k) = w(k) − ŷ(k) (9)

where w(k) denotes the reference signal. Rewriting (8) for
(k−1) and subtracting it from (8), one gets the PID control
algorithm

u(k) = u(k − 1) + d0e(k) + d1e(k − 1) + d2e(k − 2), (10)

with the following coefficients:

d0 = KP

[

1 +
TV

TS

]

, (11)

d1 = KP

[
TS

TN

−
2TV

TS

− 1

]

, (12)

d2 = KP

TV

TS

. (13)

Eq. (10) can be reformulated by inserting (9) in (10)

u(k) = u(k − 1) + kT
PID(k)w(k)

︸ ︷︷ ︸

v(k)

−kT
PID(k)ŷ(k)

︸ ︷︷ ︸

∆u(k)

(14)

with
kT
PID(k) = [d2(k) d1(k) d0(k)] ,

ŷ(k) =

[
ŷ(k − 2)
ŷ(k − 1)
ŷ(k)

]

, w(k) =

[
w(k − 2)
w(k − 1)
w(k)

]

(15)

Control design for LMNmostly involves the design of many
local controllers, each of which is associated to a particular
local model, yielding a so called local controller network
(LCN), Hunt and Johansen (1997). In view of the actual
nonlinear system which the LMN is supposed to represent
the local model partitioning then represents a meaningful
scheduling strategy. In this context there is an associated
set of PID parameters kT

PID,i for each local model which

are aggregated to the global time-varying matrix kT
PID(k)

as follows:

kT
PID(k) =

∑

I

Φi(x̃(k))k
T
PID,i,

kT
PID,i =

[

d
(i)
2 d

(i)
1 d

(i)
0

]

, ∀i ∈ I (16)

4. CLOSED-LOOP STATE-SPACE MODEL

4.1 Basic Concept

To investigate closed-loop stability analysis by means of
Lyapunov’s direct method the system has to be trans-
formed into a suitable state-space notation, see Fig. 2.
Thus, the LMN as well as the integrator of the PID-
controller are transferred into a non-minimal state space
system. According to Fig. 2 and (14) the PID control law
is divided into three parts:

(1) past input u(k − 1) (integrator)
(2) ”filtered” reference signal v(k)

(3) feedback kT
PIDŷ(k)

∆u(k)
q−1I

v(k)
b(Φ)

A(Φ)

kT
PID

cT
x(k + 1)

x(k)

ŷ(k)

ŷ(k)

C̃-
System

Fig. 2. PID controller in state-space

The system can be generally defined as

x(k + 1) = A(Φ)x(k) + b(Φ)∆u(k) (17)

ŷ(k) = cTx(k) (18)
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where the state vector contains time shifted in- and
outputs as follows

x(k) =














u(k − o)
...

u(k − 1)
ŷ(k − p+ 1)

...
ŷ(k − 1)
ŷ(k)














, x ∈ R
o+p×1. (19)

The system matrices are as follows

A(Φ) =
∑

I

Φi(x̃(k))Ai, A ∈ R
o+p×o+p (20)

b(Φ) =
∑

I

Φi(x̃(k))bi, b ∈ R
o+p×1 (21)

cT = [0 · · · 0 1] , cT ∈ R
1×o+p (22)

with

o = max(m− 1, 1) (23)

p = max(n, 3). (24)

4.2 Construction of the system matrices

Rewriting (3) for (k + 1):

ŷi(k + 1) =u(k)b
(i)
1 + u(k − 1)b

(i)
2 +

+ . . .+ u(k −m+ 1)b(i)m +

+ ŷ(k)a
(i)
1 + . . .+ ŷ(k − n+ 1)a(i)n

(25)

and inserting u(k) of (14) in (25) the outputs of the local
models are as follows:

ŷi(k + 1) =u(k − 1)(b
(i)
1 + b

(i)
2 ) + ∆u(k)b

(i)
1 +

+ . . .+ u(k −m+ 1)b(i)m +

+ ŷa
(i)
1 + . . .+ ŷ(k − n+ 1)a(i)n

(26)

The feedback loop of the input u(k − 1) is integrated in
the system matrix to provide a feedback matrix with only
three entries:

Ai = Âi + bi · [01×o−1 1 01×p] , Ai ∈ R
o+p×o+p (27)

with Âi according to (28) (see next page). The local input
matrices bi are as follows:

bi =







0o−1×1

1
0p−1×1

b
(i)
1






, bi ∈ R

o+p×1 (29)

Remark 1. The notation of Ai according to (27) and bi
according to (29) provides that (26) and the last row of
(17) are equal.

4.3 Feedback Loop

The input vector ŷ(k) of the feedback matrix is calculated
as follows:

ŷ(k) = C̃x(k) (30)

with

C̃ =

[

03×o+p−3

1 0 0
0 1 0
0 0 1

]

, C̃ ∈ R
3×o+p

5. STABILITY CONCEPTS FOR LOCAL MODEL
NETWORKS

5.1 Basic Notations

For nonlinear systems a number of refined stability con-
cepts, such as marginal stability, asymptotic stability and
exponential stability are available, Slotine and Li (1991):

Definition 2. An equilibrium state xe is marginally stable
(Fig. 3, dashed line) if for every neighborhood U > 0 of
xe there is a neighborhood T > 0, T ⊆ U of xe such that
every solution x(k) starting within T (x(0) ∈ T ) remains
within U for all k > 0. Otherwise the equilibrium point xe

is unstable (Fig. 3, dotted line).
Note that x(k) need not approach xe.

Definition 3. An equilibrium state xe is asymptotically
stable (Fig. 3, dash-dotted line) if it is marginal stable
and additionally T can be chosen so that ‖x(k)−xe‖ → 0
as k → ∞ for all x(0) ∈ T .

T

U

xe x(0)

x(0)

x(0)

Fig. 3. Stability definitions

The following definition of exponential stability was
adopted from Bernal and Husek (2005):

Definition 4. A discrete-time system is said to be globally
exponentially stable if there exist positive constants α, 0 <
α < 1 and β > 0, such that

‖x(k)‖ ≤ αkβ‖x(0)‖, ∀k ∈ N
+ (31)

The number α is known as the decay rate.

5.2 Lyapunov Stability

The global stability of a PID controlled LMN can be
proved by Lyapunov’s direct method. This general ap-
proach is based on a state space formulation of the system,
such as (17), and one has to find a suitable Lyapunov
function V (x) : R

o+p → R, Feng (2010).

Definition 5. A Lyapunov function basically has to sat-
isfy four properties to provide asymptotic stability of a
discrete-time system:

i) V (x(k) = 0) = 0
ii) V (x(k)) > 0 for x(k) 6= 0
iii) V (x(k)) approaches infinity as ‖x(k)‖ → ∞
iv) ∆V (x(k)) = V (k + 1)− V (k) < 0, ∀k ∈ N

+.

Lemma 6. For exponential stability, the Lyapunov func-
tion must satisfy i)-iii) of Definition 5 and decrease strictly
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Âi =







0o−1×1 Io−1×o−1 0o×p01×o

0p−1×o 0p−1×1 Ip−1×p−1

b
(i)
o+1 · · · b(i)s · · · b

(i)
2 a(i)p · · · a(i)q · · · a

(i)
1






,

Âi ∈ R
o+p×o+p,

if o = 1 : b
(i)
o+1 = 0,

∀ q > n : a(i)q = 0,
∀i ∈ I

(28)

monotonically over time k with a decay rate α according
to Definition 4:

V (k + 1)− α2V (k) ≤ 0, ∀k ∈ N
+ (32)

The proof of Lemma 6 is given in Bernal and Husek (2005).

When LMN are considered it is common to restrict the
search to the class of quadratic Lyapunov functions

V (k) = xT (k)Px(k) > 0, P ≻ 0 (33)

where P is a positive definite matrix, Feng (2006).
The following theorem provides a statement on exponen-
tial stability of a PID controlled LMN using a common
quadratic Lyapunov function:

Theorem 7. The equilibrium of the PID controlled dy-
namic LMN (5) is asymptotically (α = 1) or exponentially
(0 < α < 1) stable via the control law (14) in the large
if there exist symmetric matrices Q and Y ij and a decay
rate α such that

Q ≻ 0 (34)



α2Q− Y ii Q

(

AT
i − C̃

T
kPID,ib

T
i

)

(

Ai − bik
T
PID,iC̃

)

Q Q



 ≻ 0

(35)

for (36) see next page

Ỹ =







Y 11 Y 12 · · · Y 1I

Y 12 Y 22 · · · Y 2I

...
. . .

...
Y 1I Y 2I · · · Y II







≻ 0 (37)

∀i ∈ I, ∀i < j ≤ I

Proof. The proof of Theorem 7 is based on the ideas given
in Tanaka et al. (1998); Kim and Lee (2000).
From inserting ∆u(k) with v(k) = 0 of (14), (20) and (21)
in (17) follows

x(k + 1) =
∑

i,j∈I

Φi(k)Φj(k)
{

Ai − bik
T
PID,jC̃

}

x(k)

(38)

=
∑

i∈I

Φ2
i (k)Λiix(k)

+ 2
∑

i<j≤I

Φi(k)Φj(k)Λijx(k) (39)

with

Λii = Gii, Λij =
Gij +Gji

2
, Gij = Ai − bik

T
PID,jC̃.

(40)
Inserting the closed-loop transfer function (38) and the
Lyapunov function candidate (33) in (32) and using the
abbreviations of (40) results in:

V (k + 1)− α2V (k) =

=
∑

i,j,l,m∈I

Φi(k)Φj(k)Φl(k)Φm(k)

· xT (k)
[

GT
ijPGkl − α2P

]

x(k)

=
1

4

∑

i,j,l,m∈I

Φi(k)Φj(k)Φl(k)Φm(k)

· xT (k)
[
(Gij +Gji)

TP (Glm +Gml)− 4α2P
]
x(k)

≤
1

4

∑

i,j∈I

Φi(k)Φj(k)

· xT (k)
[
(Gij +Gji)

TP (Gij +Gji)− 4α2P
]
x(k)

=
∑

i,j∈I

Φi(k)Φj(k)x
T (k)

[

ΛT
ijPΛij − α2P

]

x(k)

≤−
∑

I

Φ2
i (k)x

T (k)Xiix(k)

− 2
∑

i<j≤I

Φi(k)Φj(k)x
T (k)Xijx(k)

=−







Φ1(k)x(k)
Φ2(k)x(k)

...
ΦI(k)x(k)







T 





X11 X12 . . . X1I

X12 X22 . . . X2I

...
. . .

...
X1I X2I . . . XII













Φ1(k)x(k)
Φ2(k)x(k)

...
ΦI(k)x(k)







=− x(k)TΦT (k)X̃Φ(k)x(k) < 0 (41)

The introduction of the Xij matrices allows that not all
controller-plant combinations (Gij , i 6= j) need to be
stable. Thus, it relaxes the conservatism of the proposed
approach.
From (41) follows:

∑

i∈I

Φ2
i (k)x

T (k)
[

ΛT
iiPΛii − α2P +Xii)

]

x(k)

+ 2
∑

i<j≤I

Φi(k)Φj(k)

· xT (k)
[

ΛT
ijPΛij − α2P +Xij

]

x(k) < 0 (42)

x(k)TΦT (k)X̃Φ(k)x(k) > 0 (43)

Eq. (35) and (36) of Theorem 7 follow from premultiplying
and postmultiplying (42) with Q where

Q = P−1, Y ij = QXijQ, (44)

inserting (40) and applying the Schur complement (Boyd
et al. (1994)). From (43) and (44) directly follows (37) of
Theorem 7.

6. EXAMPLE

A stable second order Wiener model is considered. It
consists of a dynamic linear block with a normalized
transfer function GL(z) = V (z)/U(z) in cascade with
a static nonlinearity f(v) at the output with v as the
intermediate variable at the output of the linear block.
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α2Q− Y ij

1

2
Q

[

AT
i +AT

j − C̃
T
(

kPID,jb
T
i + kPID,ib

T
j

)]

1

2

[

Ai +Aj −
(

bik
T
PID,j + bjk

T
PID,i

)

C̃
]

Q Q




 � 0, (36)

For the present simulation results GL(z) and f(v) where
chosen as

GL(z) =
0.0187z−1 + 0.0175z−2

1− 1.64z−1 + 0.6929z−2
(45)

y(k) = f(v(k)) = arctan(v(k)). (46)

The structure of Wiener systems enable a simple rep-
resentation of nonlinear systems. The nonlinearity f(v)
has full impact on the output and stability analysis can
become challenging, in particular when the nonlinearity
has a saturation character like in the present example,
Kozek and Jovanovic (2002).
In this example the input u(k) is bounded to the interval
[−3, 3].
A local model network comprising six local models was
generated by the algorithm presented in Hametner and
Jakubek (2007), where the local models are constructed
using an axis oblique decomposition of the partition space.
Fig. 4 shows the identification data as well as a contour
plot of the validity functions where its input vector is as
follows:

x̃(k) = [u(k − 1) ŷ(k − 1)]. (47)

−3 −2 −1 0 1 2 3
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o
u
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u
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−
1
)
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equilibrium

Fig. 4. Contour plot of the validity functions and identifi-
cation data sequence

The partitioning strategy in Hametner and Jakubek (2007)
uses statistical methods to avoid overfitting by local mod-
els generated with only few observations.
Fig. 5 illustrates the outputs of the the Wiener model
y(k) and the local model network ŷ(k) for the same input
sequence u(k). Thus, the good approximation capability
of the local model network is illustrated.

In order to demonstrate the effectiveness of the proposed
method two different PID controllers are compared. The
parameter sets of the two controllers are given in Table 1
and Table 2, respectively.

Theorem 7 fails to prove stability of the considered lo-
cal model network in connection with controller A. In
Fig. 6 the oscillatory behavior shows a poor controller
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Fig. 5. Comparison of the open-loop behavior of the
process and the local model network

Table 1. Parameters of controller A

Model # Kp TN TV

1 9.481 79.817 1.039

2 5.778 4.043 0.649

3 5.519 4.029 0.649

4 2.878 7.418 0.722

5 2.934 7.603 0.726

6 9.240 79.762 0.986

Table 2. Parameters of controller B

Model # Kp TN TV

1 0.664 4.538 1.908

2 0.073 1.638 18.588

3 0.092 2.046 14.834

4 0.830 4.973 1.947

5 0.821 4.883 1.947

6 0.637 4.393 2.011

performance and the strongly different damping indicates
that a stability proof will be difficult. Nevertheless, the
closed-loop with controller A may be stable although the
stability proof fails because Lyapunov stability criteria are
sufficient rather than necessary for stability. The closed-
loop stability of the local model network controlled by
controller B can be proven by Theorem 7. The controller
performance in the time domain looks good as well, see
Fig. 6. The closed loop performance also depends on the
approximation capability of the local model network. This
becomes visible when the local controller network is ap-
plied to the actual plant rather than to the local model
network, see Fig. 7.

7. CONCLUSION AND OUTLOOK

In this article a method to investigate exponential stability
of PID controlled local model networks was proposed.
First, a suitable state-space model was introduced to offer
the possibility to investigate closed-loop stability with a
Lyapunov based approach. Second, a decay rate was intro-

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 ThB2.1



50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 

 

time k

re
fe
re
n
ce

w
(k
)

o
u
tp
u
ts
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Fig. 6. Comparison of the closed loop performance of the
local model network with two PID controllers
Controller A: no stability assertion possible
Controller B: exponentially stable, α = 0.98
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Fig. 7. Comparison of the local model network output ŷ(k)
and the output of the original process y(k) controlled
by the globally stable controller

duced and implemented into a common stability criterion.
Further, the used stability criterion was adapted for the
considered state-space model. A simulation example high-
lights the effectiveness of the proposed method.
The proposed stability Theorem 7 may be usable for
controller design as well. For this task, the main issue is
that state of the art LMI solver cannot simultaneously
determine the Lyapunov function and the PID controller
parameters (bilinear matrix inequalities). Thus, methods
to solve BMI such as Genetic Algorithms (GA), Particle
Swarm Optimization (PSO) and iterative LMI methods
(iLMI) may be suitable for controller design.
The introduced state-space architecture offers a versatile
closed-loop description of PID controlled local model net-
works. Thus, it is possible to relax the conservatism by

applying a more advanced Lyapunov criterion (e.g. Fuzzy
Lyapunov approach).
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