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Abstract: This paper proposes a fuzzy modelling and identification approach oriented to the
design of a PI fuzzy controller for regulating both the pitch angle and the reference torque of a
wind turbine model. This strategy has been suggested for enhancing the regulator design that
could represent an alternative to the standard switching controller, already implemented in the
wind turbine test system. The controller project requires the knowledge of the dynamic model
of the wind turbine, which is achieved by means of a fuzzy modelling and identification scheme.
On the other hand, the proposed PI fuzzy controller structure is straightforward and easy to
implement with respect to different strategies proposed in literature. Moreover, by means of
these design procedures, the proposed strategy is also able to provide a robust and reliable
controller. The results obtained with the designed PI fuzzy controller are compared to those of
a switching controller already implemented for the wind turbine benchmark.
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1. INTRODUCTION

Modern technological systems rely on sophisticated con-
trol systems to meet increased performance and safety
requirements. A conventional feedback control design for
a complex system may result in an unsatisfactory perfor-
mance, or even instability, in the event of malfunctions in
actuators, sensors or other system components. To over-
come such weaknesses, new approaches to control system
design have been developed in order to tolerate uncertainty
and modelling errors, while maintaining desirable stability
and performance properties. This is particularly important
for complex processes, where the consequences of control
performance degradation can be catastrophic. Therefore,
the demand on reliability and robustness is generally high.
It is necessary to design control systems, which are capable
of tolerating potential process errors and uncertainty, in
order to improve the reliability, while providing a desirable
performance.

The strategy proposed in this work, focusing on the ap-
plication of fuzzy modelling and identification to model–
based control design, has gained increasing attention in
both theory and application (Babuška (1998)). Since a
mathematical model is a description of system behaviour,
accurate modelling for a complex nonlinear system can
be very difficult to achieve in practice. Sometimes for
nonlinear systems it can be impossible to describe them
via analytical equations. Moreover, very often, the system
structure, parameters, and measurements are not precisely
known. Thus, parametric model identification represents
an alternative for developing experimental models of com-
plex systems, such as wind turbine systems (Odgaard and
Stoustrup (2009)). In contrast to pure nonlinear iden-

tification methods, where detailed knowledge about the
model’s structure is required, fuzzy systems are capa-
ble of deriving nonlinear models directly from measured
input–output data without detailed system assumptions
(Babuška (1998)). Because of these considerations, this
paper suggests to use the fuzzy system theory, since it
seems to be a natural tool to handle uncertain condi-
tions and measurements (Babuška (1998)). Thus, instead
of exploiting complicated nonlinear models obtained by
modelling techniques, it is suggested to describe the plant
under investigation by a collection of local affine systems of
the type of Takagi–Sugeno (TS) fuzzy prototypes (Takagi
and Sugeno (1985)), whose parameters are obtained by
identification procedures.

Regarding the controller design, classical linear control
methods, such as Proportional Integral Derivative (PID)
control, sometimes cannot guarantee a satisfactory be-
haviour at each operating point of a process, due to system
nonlinearity, ageing of mechanical parts, environmental
conditions, and uncertain measurements. Moreover, due to
the behaviour of wind turbines along their nominal oper-
ating trajectory, wind turbine controllers typically consist
of multiple gain–scheduled controllers, which are designed
to operate in the proximity of a certain operating point
(Odgaard et al. (2009)). These examples exploit almost
classical controllers, or gain–scheduling approaches, whose
design sometimes cannot be direct and straightforward.

In this paper, a fuzzy control approach for the adjustment
of both the wind turbine blade pitch angle and the gen-
erator torque is proposed, and applied to the particular
benchmark. In more detail, the design of the controller
is performed according to the following steps. Firstly, a
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PI regulator is devised using the classic Ziegler–Nichols
method. Then, the corresponding PI fuzzy controller is
built, by means of a suitable choice of the gains. The
Membership Functions (MF)s and rules are derived di-
rectly from the identified TS fuzzy models. The fuzzy
identification procedure is able also to provide good ro-
bustness properties for the designed regulator. Finally, the
effectiveness of the proposed fuzzy modelling and control
strategies are assessed on data sequences acquired from
the considered benchmark, and compared with the results
achieved in (Odgaard et al. (2009)).

The paper has the following structure. Section 2 provides
an overview of the wind turbine system. Section 3 recalls
the fuzzy modelling and identification strategy exploited
in this work. The proposed fuzzy controller design and the
tuning strategy are presented in Section 3.2. The achieved
results are summarised in Section 4, whilst Section 5 ends
the paper by highlighting the main achievements of the
work.

2. WIND TURBINE MODELLING

The three blade horizontal axis turbine considered in this
paper works by the principle that the wind is acting
on the blades, and thereby moving the rotor shaft. In
order to up-scale the rotational speed to the needed
one at the generator, a gear box is introduced. A more
accurate description of the benchmark model and of the
measurements available can be found in (Odgaard et al.
(2009); Odgaard and Stoustrup (2009)).

2.1 Model Description

The wind turbine model is briefly recalled in this section
in the continuous–time domain, and subsequently approx-
imated as identified fuzzy discrete–time prototype.

The aerodynamic model is defined as in (1):

τaero(t) =
ρACp (β(t), λ(t)) v3(t)

2ωr(t)
(1)

where ρ is the density of the air, A is the area covered by
the turbine blades in its rotation, β(t) is the pitch angle of
the blades, v(t) the wind speed, whilst λ(t) is the tip–speed
ratio of the blade, defined as:

λ(t) =
ωr(t)R

v(t)
(2)

with R the rotor radius. Cp represents the power coeffi-
cient, here described by means of a two–dimensional map
(look–up table) (Odgaard et al. (2009)). Equation (1) is
used to estimate τaero(t) based on an assumed estimated
v(t), and measured β(t) and ωr(t). Due to the uncertainty
of the wind speed, the estimate of τaero(t) is considered
affected by an unknown measurement error, which can
be estimated by means of the approach described in Sec-
tion 3.1. Moreover, the nonlinearity represented by the
relations (1) and (2), and the exploited wind turbine
control strategy, have motivated the modelling approach
suggested in Section 3.

A simple one–body model is used to represent the drive
train, in the following form (Odgaard and Stoustrup
(2009)):

ω̇r(t) =
1
J

(τaero(t) − τg(t)) (3)

where:
τ̇g(t) = pgen (τref (t) − τg(t)) (4)

The generator torque τg(t), and the reference τref (t) are
in this context transformed to the low speed side of
the drive train (rotor side), whilst pgen is the generator
power coefficient. With these assumptions, the complete
continuous–time description of the system under diagnosis
has the following form:{

ẋc(t) = fc (xc(t), u(t))

y(t) = xc(t)
(5)

where u(t) = [βr(t), τg(t)]
T and y(t) = xc(t) =

[Pg(t), ωg(t)]
T are the input and the monitored output

measurements, respectively. fc (·) represents the continuous–
time nonlinear function that will be approximated via the
discrete–time fuzzy prototype from N sampled data u(t)
and y(t), with t = 1, 2, . . . N presented in Section 3.

2.2 Control System for Wind Turbines

The controller for a wind turbine operates in principle in
four zones. Zone 1 is start–up of the turbine, zone 2 is
power optimisation, zone 3 corresponds to constant power
production, and zone 4 is high wind speed. Since the focus
of the benchmark model is on the normal operation, only
zone 2 and zone 3 are considered (Odgaard et al. (2009)).
In zone 2 the turbine is controlled to obtain optimal power
production. The optimal power is obtained if the blade
pitch angle βr is equal 0 degrees, and if the tip speed ratio
is constant at its optimal value λopt.

The tip speed ratio, λ, as already described by (2), can be
written as in (6), where R is the radius of the blades, vω

is the wind speed, and ωr is the angular rotor speed:

λ =
ωr R

vω
(6)

The optimal value of λ, which is denoted with λopt, is
determined as the optimum point in the power coefficient
mapping of the wind turbine. This optimal value is achieve
by setting the reference torque to the converter, τg r.

The torque in this power optimisation zone can be written
as:

τg r = Kopt ω2
r (7)

where:

Kopt =
1
2

ρAR3 Cpmax

λ3
opt

(8)

with ρ the air density, A the area swept by the turbine
blades, Cpmax the maximal value of Cp (i.e. the power
coefficient map), related the to λopt, i.e. the optimal tip–
speed ratio.

Then the power reference is achieved and controller is
switched to control zone 3. In this zone the control ob-
jective consists of following the power reference, Pr, which

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 FrPS.1



is obtained by controlling βr, such that the Cp is decreased.
In an industrial control scheme, a PI controller is used to
keep ωr at the prescribed value by changing βr. The second
control input is τg r, whose value is computed by using (7)
with the optimal gain derived from (8).

2.3 Benchmark Original Control Strategy

The wind turbine controller in this simulation model works
in two regions as recalled in Section 2.2. Region 1 is
denoted power optimisation and region 2 is the power
reference following. The controller is implemented with a
sample frequency at 100 Hz. The controller starts in mode
1 (region 1). Therefore, the control mode should switch
from mode 1 to mode 2 if:

Pg(k) ≥ Pr(k) and ωg(k) ≥ ωnom (9)

where k indicates the acquired discrete–time measure-
ments from the corresponding continuous–time signals,
whilst ωnom is the nominal turbine speed. On the other
hand, the control switches from mode 2 to mode 1 if:

ωg(k) < ωnom − ωΔ (10)

where ωΔ is a number that introduces hysteresis to en-
sure a minimum time between transitions. In particular,
regarding the control mode 1, the converter reference signal
is defined as in (7) and (8), and βref = 0, i.e.:⎧⎪⎪⎨

⎪⎪⎩
τg r = Kopt ω2

r

Kopt =
1
2

ρAR3 Cpmax

λ3
opt

On the other hand, for the control mode 2 :{
βr(k) = βr(k − 1) + kp e(k) + (ki Ts − kp) e(k − 1)

e(k) = ωr(k) − ωnom

(11)

where ki = 1 and kp = 4 according to the benchmark
parameter tuning settled as described in (Odgaard and
Stoustrup (2009)).

3. FUZZY MODELLING FOR CONTROL

This section describes the fuzzy modelling and identifica-
tion scheme, briefly recalled in Section 3.1, which enhances
the design procedure of the proposed fuzzy controller, as
shown in Section 3.2.

3.1 Fuzzy Identification from Data Clustering

The modelling approach exploited in this work relies on
the identification of transparent rule–based fuzzy models,
which can accurately predict the quantities of interest,
and at the same time provide insight into the system
that generated the data. Attention is paid to the selection
of appropriate model structures in terms of the dynamic
properties, as well as the internal structure of the fuzzy
rules (in particular, Takagi–Sugeno type) (Takagi and
Sugeno (1985)). From the system identification point of
view, a fuzzy model is regarded as a composition of local
affine sub models. Fuzzy sets naturally provide smooth

transitions between the submodels, and enable the inte-
gration of various types of knowledge within a common
framework.

In order to generate fuzzy models automatically from mea-
surements, a comprehensive methodology is used. This em-
ploys fuzzy clustering techniques to partition the available
data into subsets characterised by a linear behaviour. The
relationships between the presented identification method
and linear regression are exploited, allowing for the combi-
nation of fuzzy logic techniques with system identification
tools. In addition, the implementation in the Matlab r©
toolbox of the Fuzzy Modelling and IDentification (FMID)
techniques presented in the following is available (Babuška
(2000)). Fuzzy identification usually refers to methods and
algorithms for constructing fuzzy models from data.

In this study, fuzzy models are viewed as a class of local
modelling approaches, which attempt to solve a complex
modelling problem by decomposing it into a number of
simpler sub–problems. The theory of fuzzy sets offers an
excellent tool for representing the uncertainty associated
with the decomposition task, for providing smooth tran-
sitions between the individual local sub models, and for
integrating various types of knowledge within one common
framework. In particular, fuzzy logic is exploited to define
a TS fuzzy model (Takagi and Sugeno (1985)).

A large part of fuzzy modelling and identification algo-
rithms (see e.g. (Babuška (1998)) and references therein)
share a common two–step procedure, in which at first,
the operating regions are determined using heuristics or
data clustering techniques. Then, in the second stage,
the identification of the parameters of each submodel is
achieved using the identification algorithm in particular
proposed by the author (Simani et al. (1999)), which
can be seen as a generalisation of classical least–squares.
From this perspective, fuzzy identification can be regarded
as a search for a decomposition of a nonlinear system,
which gives a desired balance between the complexity and
the accuracy of the model, effectively exploring the fact
that the complexity of systems is usually not uniform.
Since it cannot be expected that sufficient prior knowl-
edge is available concerning this decomposition, methods
for automated generation of the decomposition, primarily
from system data, are developed. A suitable class of fuzzy
clustering algorithms can be used for this purpose, and in
particular, the well–known Gustafson–Kessel (GK) fuzzy
clustering is exploited in this work (Babuška (1998)), since
already implemented in (Babuška (2000)).

The fuzzy rule–based model suitable for the approximation
of a large class of nonlinear systems was introduced by
Takagi and Sugeno (TS) (Takagi and Sugeno (1985)).
In the TS fuzzy model, the rule consequents are crisp
functions of the model inputs:

Ri : IF x(k) is Ai THEN yi = fi

(
x(k)

)
(12)

where i = 1, 2, · · · , M , x(k) ∈ �p is the input (an-
tecedent) variable and yi ∈ � is the output (consequent)
variable. Ri denotes the i–th rule, and M is the number
of rules in the rule base. Ai is the antecedent fuzzy set
of the i–th rule, defined by a (multivariate) membership
function. The consequent functions fi are typically chosen
as instances of a suitable parameterised function, whose
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structure remains equal in all the rules and only the
parameters vary. A simple and practically useful parame-
terisation is the affine form:

yi = ai x + bi, (13)

where ai is a parameter vector, and bi is a scalar offset.
This model is referred to as affine TS model, and it can be
written as (Takagi and Sugeno (1985)):

y =
∑M

i=1 μi(x) yi∑M
i=1 μi(x)

(14)

Therefore, the effective approach for the identification of
complex systems consists of partitioning the available data
into subsets and approximate each subset by a simpler
affine model. Therefore, fuzzy clustering represents the
tool to obtain a partition of data where the transitions
between the subsets are gradual rather than abrupt. The
antecedent fuzzy sets Ai can be computed analytically in
the antecedent product space, or can be extracted from
the fuzzy partition matrix (Babuška (2000, 1998)). The
consequent parameters ai and bi are estimated from the
data using the method developed by the author (Simani
et al. (1999)), and recalled below. This identification
scheme exploited for the estimation of the TS model
parameters has been integrated into the FMID toolbox
for Matlab r© by the author.

As already remarked, the set of optimal parameters ai and
bi with respect to the model outputs are estimated by
using the procedure developed in (Simani et al. (1999)).
This approach can be formulated as minimisation of the
total prediction error of the TS model. This approach
developed by the author is usually preferred when the TS
model should serve as predictor (Simani et al. (1999)),
and it computes the consequent parameters by the so–
called Frisch scheme. After the clustering of the data
has been obtained via the GK algorithm, data subsets
are processed according the Frisch scheme identification
procedure (Simani et al. (1999)), in order to estimate the
TS parameters for each affine submodels.

Note that the estimation procedure applied here is able to
provide the required robustness and reliability properties.
To this aim, the GK fuzzy clustering algorithm has been
applied to two different data sets. The first data set is
the so–called estimation data, whilst the second one is
the so–called validation data. The optimal number of
clusters M , the estimated MFs, and the set of the optimal
parameters ai and bi have been determined on the basis
of the minimisation of the reconstruction error, that is the
difference between the actual output and the one from the
identified TS fuzzy model. In this way, the optimal TS
prototype, which is able to model both the data sets, is
determined.

3.2 Fuzzy Controller Design

The proposed fuzzy logic controller is fed by the error
signal e(k), i.e. the tracking error defined as the differ-
ence between the considered set–point r(k) and the plant
controlled output y(k) at the sample k:

e(k) = r(k) − y(k) (15)

The fuzzy PI controller uses a second input signal, defined
as the sum of the system errors, which is computed using
the following expression:

δe(k) =
k∑

i=1

e(i) (16)

It is known from digital control theory that the most fre-
quently used digital PI control algorithm can be described
as follows:

u(k) = kp e(k) + ki δe(k) (17)

where ki = kp
Ts

Ti
, Ts is the sampling time, Ti is the

integral time constant of the conventional controller, kp

is the proportional gain, and u(k) is the output control
action.

The Sugeno’s fuzzy rules into the fuzzy PI controller
can be composed in the generalised form of “IF–THEN”
composition with a premise and an antecedent part to
describe the control policy. The rule base comprises a
collection of M rules, where the index (j) represents the
rule number:

Rj : IF x(k) is Aj THEN f (j)
u (k) =

= K
(j)
P e(k) + K

(j)
I δe(k) j = 1, 2, · · · ,M,

(18)

where e(k) and δe(k) are the input variables. In this
expression, a similarity between the equation of the con-
ventional digital PI controller (17) and the Sugeno’s out-
put function (18) can be found. In this case, the fuzzy
PI controller is considered as a collection of several lo-
cal PI controllers, which are represented by the Sugeno’s
functions into the different fuzzy rules. In this way, it is
possible to approximate the nonlinear characteristic of the
controlled plant.

For a discrete universe with M quantisation levels in the
fuzzy output, the control action u = uF is expressed as a
weighted average of the Sugeno’s output functions fu and
their membership degrees μi of the quantisation levels,
with i = 1, . . . , M . Also in this case, before the output
can be inferred, the degree of fulfilment of the antecedent
denoted by μi(x) must be computed. Thus, the degree of
fulfilment is simply equal to the membership degree of the
given input x, i.e., μi = μAi

(x). By recalling the identified
Takagi–Sugeno model, the inference is reduced to a sim-
ple expression, similar to the fuzzy–mean defuzzification
formula (Babuška (1998)):

uF =

∑M
j=1 μj(x) f

(j)
u∑M

i=1 μj(x)
(19)

or, by substituting the expression of the fuzzy PI terms:

uF (k) =

∑M
j=1 μj

(
x(k)

) (
K

(j)
P e(k) + K

(j)
I δe(k)

)
∑M

i=1 μj

(
x(k)

) (20)

where the time dependence at the instant k has been
highlighted. It is worth noting that the PI controller
parameters K

(j)
P and K

(j)
I (with j = 1, . . . , M) are

settled according to the Ziegler–Nichols rules applied to
the identified local linear TS submodels. Then, in order
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to obtain a quick reaction to set–point variations, gain
scheduling of the fuzzy regulator parameters is performed
depending on the error, as shown by (20).

The second step consists in building the fuzzy controller
of (20). The input MFs μj(x) coincide with the ones of
the identified TS model, as described in (Babuška (1998)).
The number of the input MFs determines the number of
rules and output MFs. In this work, the optimal number
of rules M is equal to the minimal number of clusters used
to identify the nonlinear system, as described at the end of
3.1. Finally, the adopted fuzzy operators are the product
as AND operator, the bounded sum as OR operator, MIN
as implication method, the Center of Gravity (COG) as
defuzzification method.

Also in this case, it is worth highlighting the strategy
applied for achieving the required robustness character-
istics. With reference to (20), the PI controller parameters
K

(j)
P and K

(j)
I are tuned via the Ziegler–Nichols rules,

applied to the identified local linear TS submodels, and
by considering the validation data set. Therefore, the
optimal controller performances with respect to set–point
variations are validated and enhanced for different working
conditions. In this way, if both the TS model identifica-
tion and fuzzy regulator tuning procedures are properly
preformed, the gain scheduling mechanism of the fuzzy
regulator parameters leads to good robustness properties.

Note finally that, even if the simple Ziegler–Nichols rules
have been exploited, the implementation of the classical
PI controllers as a unique fuzzy regulator provides the
required properties of the proposed strategy. Thus, Section
4 will show the achieved results regarding the fuzzy PI
controller parameter tuning using the data sequences from
the wind turbine benchmark.

4. EXPERIMENTAL RESULTS

This section describes the experimentations with the
methods proposed for the fuzzy modelling technique ori-
ented to the design of the fuzzy controller relying on the
multiple–model TS approach.

The GK clustering algorithm with M = 3 clusters and
a number of shifts n = 2 was applied to the estimation
and validation data sets {Pg(t), ωg(t), βr(t)}. On the other
hand, a number of clusters M = 3 and n = 2 was consid-
ered for achieving a suitable clustering of the sampled data
sets {Pg(t), ωg(t), τg(t)}. After clustering, the TS model
parameters for each output were estimated. Therefore,
the i–th output y(t) of the wind turbine (i = 1, . . . , m
and m = 2) continuous–time model (5) is approximated
by a Takagi–Sugeno fuzzy Multiple–Input Single–Output
(MISO) discrete–time prototype (14) with r = 2 inputs.
The fuzzy multiple models are able to approximate the
process under diagnosis quite accurately.

Using this identified TS fuzzy prototype, the model–based
approach for determining the fuzzy controller is exploited
and applied to the actual wind turbine benchmark. Ac-
cording to Section 3.2, the parameters of the fuzzy PI
controllers have been computed. In particular, as the
identified TS models for each output consists of a fuzzy
collection of 3 MISO second order (n = 2) models, the
regulator parameters in (18) are computed analytically.

In more detail, by considering a second order local model

described by its identified parameters ai =
[
α

(i)
2 , α

(i)
1

]T

and bi

[
δ
(i)
2 , δ

(i)
1

]T

, the so–called critical gain K
(i)
0 and

critical period of oscillations T
(i)
0 required by the Ziegler–

Nichols method are computed as follows (Bobál et al.
(2005)):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K
(i)
0 =

α
(i)
1 − α

(i)
2 − 1

δ
(i)
2 − δ

(i)
1

T
(i)
0 =

2πTs

arccos γ(i)
with γ(i) =

α
(i)
2 δ

(i)
1 − α

(i)
1 δ

(i)
2

2 δ
(i)
2

(21)

Relations (22) are thus used for calculating the parameters
K

(i)
P and K

(i)
I of the (local) i–th PI controller of (18):{

K
(i)
P = 0.6K

(i)
0

(
1 − Ts

T
(i)
0

)
K

(i)
I =

1.2K
(i)
0

K
(i)
P T

(i)
0

(22)

where Ts is the sampling time.

In the following, the suggested fuzzy PI controllers and
the original switching strategy described in Section 2.3
have been implemented and compared in the Matlab r© and
Simulink r© environments.

The experimental set–up employs 2 MISO fuzzy PI regula-
tors used for the control of the blade pitch angles and the
generator control torque, respectively. As an example, by
using the previous relations of (21) and (22), the following
tuned parameter sets have been computed for the pitch
angle control:{

{K(1)
P , · · · , K

(3)
P } = {4.3, 4.1, 4.2}

{K(1)
I , · · · , K

(3)
I } = {1.2, 1.4, 1.5} (23)

In order to compare the advantages of the proposed fuzzy
PI strategy, the obtained results are also compared with
the ones achieved by using the original switching wind
turbine benchmark regulator recalled in Section 2.3.

The controller capabilities have been assessed in simula-
tion by considering different data sequences. In Tables 1
and 2, the per–cent Normalised Sum of Squared tracking
Error (NSSE) values defined as:

NSSE% = 100

√√√√√∑N
k=1

(
r(k) − y(k)

)2

∑N
k=1 r2(k)

(24)

are computed for both the controllers. It is worth noting
that in partial load operation, the performance is repre-
sented by the comparison between the power produced by
the generator Pg with respect to the theoretical maximum
power output, Pr given the instant wind speed. On the
other hand, in full load operation the performance depends
on the generator speed ωg with respect to the nominal one,
ωnom.

According to these simulation results, the robustness prop-
erties of the suggested fuzzy PI controllers seem to be
reached, and they are slightly better than the original
switching regulator.
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Table 1. Controllers in partial load operation:
NSSE% values.

Data Set Benchmark Controller Fuzzy PI

Estimation data 39.34% 36.36%

Validation data 42.19% 37.17%

Table 2. Controllers in full load operation:
NSSE% values.

Data Set Benchmark Controller Fuzzy PI

Estimation data 19.53% 16.57%

Validation data 21.01% 17.85%

The robustness and reliability properties of the designed
fuzzy controllers have been tested and assessed in simula-
tion. Therefore, the parameters of the wind turbine bench-
mark model described in Section 2 have been modified of
20% with respect to their nominal values (Odgaard and
Stoustrup (2009)). The obtained results summarised in Ta-
ble 3 seem to show that the performances of the proposed
fuzzy controller are almost unchanged with respect to the
nominal situation.

Table 3. Fuzzy controller NSSE% values.

Data Set Partial load Full load

Estimation data 36.37% 16.57%

Validation data 37.19% 17.94%

As a final example, the wind turbine power Pg(t), which
represents one of the main controlled variables, is reported
in the following. In particular, Figure 1 represents the
reference variable (continuous lines) compared with the
corresponding controlled signal (dashed lines) tracked by
the model.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1
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Power (W.)

Fig. 1. Set–point (continuous line) and controlled (dashed
line) power signal Pg(t).

On the other hand, Figure 2 depicts the controlled gener-
ator speed ωg(t), with respect to the corresponding set–
point.

5. CONCLUSION

This paper proposes a fuzzy modelling and identification
approach oriented to the design of a PI fuzzy controller for
regulating both the pitch angle and the generator torque
of a wind turbine benchmark. This strategy was suggested
for enhancing the regulator design that could represent
an alternative to standard switching controllers, already
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-10
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�
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Fig. 2. Reference (continuous line) and controlled (dashed
line) generator speed ωg(t).

implemented for wind turbine benchmark. The control
design requires the knowledge of a wind turbine model,
which is achieved by means of the suggested fuzzy estima-
tion scheme. It is shown also that the proposed controller
design procedure is easy to implement. Further studies will
concern the application of the suggested methods to real
process data.
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