
Multiple-Lane Vehicle Platooning

based on a Multi-Agent Distributed

Model Predictive Control Strategy*

Constantin F. Caruntu ∗,†, Anca Maxim ∗,††, Razvan C. Rafaila †,‡

∗ Department of Automatic Control and Applied Informatics, Gheorghe Asachi Technical University of Iasi, Iasi, Romania
† Chassis and Safety Department, Continental Automotive Romania, Iasi, Romania

†† Department of Electrical energy, Metals, Mechanical Constructions and Systems, Ghent University, Ghent, Belgium
‡ Department of Electrical Engineering, Gheorghe Asachi Technical University of Iasi, Iasi, Romania

Email: caruntuc@ac.tuiasi.ro

Abstract—Vehicle platooning became an interesting topic in
the last years, many researchers and practitioners from the
academia and industry trying to develop new theories and design
appropriate control methods and communication methodologies
in order to bring this concept as fast as possible on the roads.
Since vehicles drive on multi-lane roads and highways, the
subsequent paradigm was to treat vehicles as swarms, i.e., groups
of vehicles that travel closely together on different lanes and
are electronically connected. A step forward towards this new
concept would be the design of multiple-lane platoons. As such,
this paper proposes a multi-agent distributed model predictive
control strategy for the longitudinal coordination of the vehicles
in individual platoons and a classical PI control algorithm for the
lateral control of each vehicle in the platoon w.r.t. its neighbors.
The simulation results obtained in Matlab/Simulink and the
performance analysis prove that the concept is viable.

Index Terms—Vehicle platooning, Multiple-lane platooning,
Distributed control, Model predictive control

I. INTRODUCTION

The first idea of vehicle platooning, which basically became

its first definition, was published in [1]: “A platoon is a collec-

tion of vehicles that travel close together, actively coordinated

in formation.” Although this definition is very general, it does

not provide too much information about how the vehicles are

inter-connected and how they are supposed to travel together in

a formation. A more suitable and specific definition, which is

preferred in the literature, was provided while developing the

Safe Road Trains for the Environment (SARTRE) platooning

concept [2]: “A platoon is a number of vehicles that are

traveling together and electronically connected. There is one

lead vehicle and one or more following vehicles. The following

vehicles of a platoon are controlled autonomously, while the

lead vehicle is controlled manually.” As mentioned in the latter

definition, the biggest interest in platooning appeared with the

development of electronic communication channels - Vehicle

to Vehicle (V2V) and Vehicle to Infrastructure (V2I) based on

wireless connections.
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Vehicle platooning became very popular during the last

years, many researchers, both from industry and academia, and

from all over the world, trying to pursue the goal of making

the highways safer, while increasing their capacity. Moreover,

several projects dealt with the vehicle platoon concept, from

which the most known are: SARTRE (Europe) [3], California

Partners for Advanced Transit and Highways Program (PATH

- USA) [4], SCANIA platooning (Europe and Japan), Energy

Intelligent Transportation Systems (ITS - Japan), AUTO21

Collaborative Driving System (CDS - Canada) and many

others. These projects cannot be compared because they differ

in specific parts, but all of them are proving positive effects of

platooning concept on highway traffic. The SARTRE project

[3] aimed at creation of road trains with a lead commercial

vehicle and a set of following vehicles driving in a line. The

PATH program published an estimation of 20% decrease of

fuel consumption [4]. Also, smaller spacing can be achieved

by using platooning, various use-cases and traffic conditions

being simulated and feasibility of using road trains was proven.

The most widely studied platoon configuration is the col-

umn, also known as train configuration. This arrangement

is mostly adapted to urban or highway transportation. Other

kinds of formations can be considered, such as line, echelon

and arbitrary [5]. Each one of these configurations possesses

interesting properties in relation with application fields such as

vehicle swarming, which is an optimized platooning method

of a swarm of automated vehicles; this is to ensure that the

space utilization on highways is optimized and that the traffic

congestion is reduced. The configuration considered in this

study is a multiple-lane platoon that is composed of several

longitudinal platoons with train configurations (each one on

a different lane) and for which lateral control is also ensured

on a single vehicle basis. Thus, every following vehicle needs

to maintain a safe distance w.r.t. the vehicle in front and the

lateral vehicles (in the right and/or left side). In particular, the

leading vehicles from each lane must only keep the desired

lateral distance in between themselves.

Due to the intrinsic coupling within the multiple-lane pla-

toon, this kind of system can be regarded as a collection
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of different sub-systems (i.e. the vehicles) coupled among

each others. As such, a reasonable control choice is the

distributed model predictive control strategy (DMPC) [6], [7].

The working idea is to locally control each vehicle by a

local agent (or controller) taking into account the coupling

nature between the sub-systems (e.g. caused by dynamics,

optimization problems and / or constraints). In [8], a DMPC

strategy for active steering of a cooperative vehicle platoon

is proposed, whereas a non-cooperative DMPC algorithm for

the longitudinal control in a platoon is given in [9]. The

cruise and headway control of a in-line vehicle platoon is

provided in [10], where the overall string stability is ensured

via appropriate terminal constraints selection.

This work proposes a general framework to model and

control the vehicles in a multiple-lane platoon considered as a

multi-agent system. As such, a multi-agent distributed model

predictive control strategy is designed for the longitudinal co-

ordination of the vehicles in individual platoons and a classical

proportional-integral (PI) controller algorithm is designed for

the lateral control of each vehicle in the platoon w.r.t. its

neighbors.

The paper is structured as follows. Section II presents the

longitudinal and lateral models of the vehicle used in Section

III for controller design purposes. In Section IV the simulation

results are illustrated with a performance analysis, followed by

the concluding remarks in Section V.

II. VEHICLE DYNAMICS MODELING

In what follows, the longitudinal and lateral models of the

vehicle, used in Section III for controller design purposes, are

briefly described.

A. Longitudinal dynamics

In this subsection, the longitudinal dynamics corresponding

to each vehicle in the platoon is given. From control design

considerations, the vehicle model is reduced only to the

automotive drive-train, which is a mechanical system that

describes the power transfer from the engine to the driving

wheels. Still, this dynamics simplification needs to provide a

sufficiently complex model to characterize the main dynamics

of the drive-train [11].

In Fig. 1 a schematic diagram for the drive-train dynamics

is given, which is described by two inertias linked by a

flexible drive-shaft. The first inertia Jeg models the engine,

the gearbox and the final reduction gear (FRG), whereas

the second one Jv represents the driving wheels and vehicle

cumulative influences.

Within this model, the torque generated by the engine,

denoted Te, acts as the control variable and is presumed to

be produced instantaneous, whenever the engine electronic

control unit (ECU) requests it. The dynamics involved in the

torque production, i.e., combustion and airflow control is not

within the scope of this work and is available in [12].

The engine-gearbox inertia is described as:

Jegω̇e = Te − beωe − Tf/itot, (1)
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Fig. 1. Vehicle drive-train schematic representation.

where the corresponding inertia of the engine-gearbox ensem-

ble is denoted by Jeg := Je +
Jg

i2
tot

, depending on itot = igif ,

which is the overall transmission ratio from the gearbox and

the FRG, and both the engine Je and the gearbox Jg inertias,

respectively; the speed and the damping coefficient of the

engine are marked with ωe and be, jointly; the torque in the

flexible drive-shaft is expressed by Tf .

The wheel-vehicle inertia is modeled by:

Jvω̇w = Tf − Tload, (2)

with the wheel speed ωw and the load torque Tload. Subse-

quently, the vehicle inertia is given by:

Jv = Jw +mvr
2
w, (3)

where Jw defines the wheels inertia, and the equivalent lon-

gitudinal inertia of the vehicle mass depends on the mass of

the vehicle mv and the wheel radius rw.

In order to define the torque in the flexible drive-shaft, one

can express it as a spring and damper mechanism:

Tf = bf (ωe/itot − ωw) + kf (θe/itot − θw) , (4)

with kf and bf the elasticity and the damping coefficients,

respectively; θe and θw are the engine and wheel angles,

jointly.

The load torque

Tload = Tairdrag + Troll + Tgrade, (5)

is computed as sum of three torque components corresponding

with:

i) the aerodynamic drag of the vehicle

Tairdrag = 0.5ρairAfcdV
2
x rw,

with ρair the air density, Af the frontal area of the vehicle, cd
the airdrag coefficient and Vx the vehicle speed. Since Vx =
rwωw it implies that Tairdrag is a nonlinear in ωw, which can

be approximated with

Tairdrag = baωw, (6)

where ba is an approximation parameter.

ii) the rolling of the tires

Troll = crmvg cos(χroad)rw

where cr denotes the rolling coefficient, g is the gravitational

acceleration and χroad is the road grade.

iii) the road grade

Tgrade = mvg sin(χroad)rw.
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Fig. 2. Bicycle model of a vehicle.

The engine torque (control input) is restricted by lower and

upper bounds, i.e.,

0 ≤ Te ≤ Tmax
e , (7)

where Tmax
e is the maximum torque that can be generated by

the internal combustion engine.

The output of the longitudinal dynamics is selected as the

vehicle speed Vx, which can be determined directly from the

wheel speed as mentioned previously.

B. Lateral dynamics

To implement the control strategy for lane keeping, a lateral

dynamics model of the vehicle is needed. Usually, the vehicle

dynamics is modeled using the bicycle model or single track

model (Fig. 2), which considers the front wheels united and

the same for the back wheels of the vehicle. Moreover, the

vehicle’s center of gravity is considered to be at the ground

level, thus ignoring the influences of vehicle tilting on the

lateral and longitudinal dynamics.

The mathematical model can be obtained using Newton’s

second law of movement, yielding:

mvẍ = mv ẏψ̇ + 2Fxf + 2Fxr,

mv ÿ = −mvẋψ̇ + 2Fyf + 2Fyr,

Jψ̈ = 2lfFyf − 2lrFrf ,

(8)

where x is the longitudinal position and y is the lateral position

of the vehicle, respectively, ψ is the vehicle yaw angle, Fxf

and Fxr are the longitudinal tire forces of the front and rear

wheels, respectively, Fyf and Fyr are the lateral tire forces

of the front and rear wheels, respectively, lf and lr are the

distances between the front axle and the rear axle, respectively,

and the center of gravity, and J is the lateral vehicle inertia.

The tire forces (Fxf , Fxr, Fyf and Fyr) are responsible for

the vehicle movement and can be modeled using Pacejka’s

nonlinear model [13], as:

Fxf = fxf (αf , κf , Fzf ), Fxr = fxr(αr, κr, Fzr),
Fyf = fyf (αf , κf , Fzf ), Fyr = fyr(αr, κr, Fzr),

(9)

where αf is the front wheels slipping angle, αr is the back

wheels slipping angle, κf is the front wheels longitudinal

slipping, κr is the back wheels longitudinal slipping, Fzf and

Fzr are the normal forces that act on the front axle and rear

axle, respectively.

The wheels slipping angles from (9), can be computed as:

tanαf =
−ẋ sin δ + (ẏ + lf ψ̇) cos δ

ẋ cos δ + (ẏ + lf ψ̇) sin δ
, tanαr =

ẏ − lrψ̇

ẋ
,

(10)

where δ is the steering angle of the front wheels.

To calculate the longitudinal slipping of the front and rear

wheels, respectively, taken into account in (9), a difference

between acceleration (a) and braking (b) must be considered

as (for the front wheels):

κa,f = −
ẋ− rwωw,f

rwωw,f

, κb,f = −
ẋ− rwωw,f

ẋ
, (11)

where ωw,f is the angular speed of the front wheel. The

longitudinal slipping parameters for the back wheels κa,r and

κb,r can be determined in a similar manner.

Considering that the vehicle drives on a perfectly flat road,

the normal forces Fzf and Fzr are given as:

Fzf =
mvglr

2(lf + lr)
, Fzr =

mvglf
2(lf + lr)

. (12)

The equations described by (8) - (12) represent the math-

ematical model of the vehicle dynamics, which is nonlinear,

but it can be generally linearized in order to control just the

lateral or the longitudinal dynamics and we’ll consider just the

lateral dynamics control in what follows.

A linear model of the lateral dynamics can be obtained by

linearizing the front and rear tires lateral forces:

Fyf = Cyfαf , Fyr = Cyrαr, (13)

where Cyf and Cyr are the cornering stiffness coefficients of

the tires.

The slipping angles αf and αr can be rewritten using the

small angles approximations as:

αf = δ −
ẏ + lf ψ̇

ẋ
, αr = −

ẏ − lrψ̇

ẋ
. (14)

Considering that the vehicle has a constant longitudinal

speed Vx, the equations given in (8) can be reduced to describe

only the lateral dynamics as:

mv ÿ = −mvVxψ̇ + 2Fyf + 2Fyr,

Jψ̈ = 2lfFyf − 2lrFrf ,
(15)

where δ is the control input and y is the output of the system.

III. MULTIPLE-LANE PLATOONING CONTROL STRATEGY

To achieve the multiple-lane vehicle platooning aim, the

control problem was split in two stages: A) single-lane platoon

control based on a DMPC strategy and B) lateral control

characteristics for individual vehicles within the platoon based

on a PI control strategy.
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Fig. 3. Control architecture for a leader in the multiple-lane platoon.

A. Control architecture

Each leader vehicle uses a model predictive control strategy,

as detailed in the following subsection, to maintain a certain

reference speed Vref . This reference is provided either by

the driver, or by another controller superior in the hierarchy,

e.g., smart infrastructure, adaptive cruise control, which is

denoted as the Longitudinal reference generator in Fig. 3,

by manipulating the engine torque Te. Moreover, the leading

vehicles from each lane must also keep the desired lateral

distance between themselves, which is directly related to

their imposed lateral position yref provided by the Lateral

reference generator. This action is performed by manipulating

the steering angle δ using a PI controller (see Fig. 3). Note

that the vehicle speed Vx is needed as an input for the lateral

dynamics.

A similar architecture as the one detailed for the leaders

(Fig. 3) is required for the followers. Every following vehicle

needs to maintain a safe distance w.r.t. the vehicle in front by

using a DMPC strategy as it will be presented in the following

subsection and a safe distance w.r.t. the lateral vehicles (in the

right and/or left side) using a PI controller.

B. DMPC longitudinal control for vehicle platooning

In this subsection some details regarding the DMPC algo-

rithm are provided. As previously mentioned, this strategy is

suitable for multiple, coupled sub-systems, since the interac-

tions are considered directly into the optimization problem.

From the vehicle platooning point of view, we propose a

non-cooperative, non-iterative strategy, formulated for input-

coupled sub-systems. For the particular train (or in-chain)

communication architecture, the relevant information is uni-

directionally broadcast from the agent in charge of the lead-

ing vehicle, hereafter named the platoon leader towards the

controller which regulates the next following vehicle, called

follower. At the local level, this agent uses the data to compute

the optimal solution for the locally described optimization

problem and sends the corresponding knowledge towards its

follower agent. The algorithm is non-iterative, since among

two consecutive agents, the information is exchanged only

once within the sampling period.

The control objectives for the longitudinal vehicle platoon-

ing problem, with train configuration are defined separately,

namely: i) cruise control (i.e. tracking an imposed velocity

reference) for the leader and ii) headway control (i.e. main-

taining a desired distance) for the followers. In the latter, a time

variant headway control was imposed, using the methodology

from [14]:

Sd = S0 + hVxf (16)

with Sd is the desired headway between the followers, S0 is

the minimum inter-vehicle distance allowed and Vxf is the

follower’s velocity; h is a function of the relative velocity,

defined as:

h =











αVxf , h0 − c0(Vxl − Vxf ) ≥ αVf

h0 − c0(Vxl − Vxf ), 0 ≤ h0 − c0(Vxl − Vxf ) ≤ αVxf

0, otherwise
(17)

where Vxl is the velocity of the ’relative’ leader, i.e. the

predecessor of the current follower; h0 > 0, c0 > 0 are two

constants to manipulate the influence of the relative velocity

Vxl − Vxf ; and α > 0 is used to compute the maximum

saturation value for h, depending on the current follower’s

velocity Vxf . Note, that in particular, for h = 0 the imposed

headway Sd is reduced to the minimum distance S0 allowed

between the vehicles, whereas with S0 = 0 the desired

distance is solely influenced by Vxf .

Starting from a vehicle longitudinal dynamics given in

Section II-A and using γ = Te as the control input and

υ = Vx = rwωw as the measured output, hereafter the N
vehicles platoon is described, where each vehicle i ∈ N has

the following linearized first order model:

V̇x =
1

τ
Vx +

K

τ
Te (18)

where τ is the time constant and K is the gain of the system.

In the corresponding state-space model, the longitudinal

vehicle position xl, and the forward velocity Vxl are the

components of the state vector ξl, while γl and υl are the

manipulated and output variables, respectively:

ξ̇l =

[

0 1
0 −1

τ1

]

ξl +

[

0
Kl

τl

]

γl

υl =
[

0 1
]

ξl

(19)

where l subscript denotes the leader.

In order to create a input-coupled platoon from individual

vehicles defined with (19), each follower was modeled as in

[10]:

ξ̇f =





0 −1 1
0 −1

τf
0

0 0 −1
τl



 ξf +





0
Kf

τf

0



 γf +





0
0
Kl

τl



 γl

υf =
[

1 0 0
]

ξf
(20)

where the state vector ξf consists of the headway with respect

to its ’relative’ leader (i.e. the vehicle in front, denoted with

l subscript) and the forward velocities Vxf and Vxl of the

current follower and its predecessor, respectively; γf and υf
have the same meaning as in (19), the f subscript denoting

the follower.

Note that in (20), the followers are input-coupled with their

leaders through the exogenous input γl which is received from

the vehicle in front.
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In order to ensure that the tracking problem for both

leader and followers does not have steady-state error, the

prediction models were augumented with an integrator, using

the modeling methodology described in [9]. After that, for

each agent i ∈ {2, . . .N} in charge of each follower, the

local cost function proposed in [9] was used:

Ji(ξi(k),∆Γi(k),∆Γi−1(k)) =

(Rsi −Υi)
T
(Rsi −Υi) + ∆Γi(k)

TRi∆Γi(k) (21)

with Υi output predictor defined over the prediction horizon

Np; ∆Γi(k) the local future input sequence computed over

the control horizon (Nc ≤ Np); Rsi ∈ RNp is the set-point

vector and Ri = βINc
, β > 0 defines the input weight matrix;

∆Γi−1(k) is the input trajectory received from the previous

vehicle via the communication network.

Notice that the leader’s cost function, with subscript i = 1
defined with (21) is not influenced by ∆Γi−1(k) since the

first vehicle in the platoon can be treated independently of the

following vehicles.

For all vehicles in the platoon, the local cost functions were

minimized taking into account input constraints (7) rewritten

as:

0 ≤ ∆Γi(k) ≤ γmax (22)

where γmax ∈ RNc is a vector containing the maximum input

value within the control horizon.

C. Lateral control for multiple-lane platooning

For controller design purposes, using (13), (14) and (15), a

linear state-space model of the vehicle lateral dynamics can

be obtained:

ż (k) = Az (k) +Bu (k)
t (k) = Cz (k)

(23)

with

A =











0 1 0 0

0 −
2Cyf+2Cyr

mvVx
0 −Vx −

2lfCyf−2lrCyr

mvVx

0 0 0 1

0 −
2lfCyf−2lrCyr

JVx
0 −

2l2fCyf+2l2rCyr

JVx











,

B =









0
2Cyf

mv

0
2aCyf

J









, C =
[

1 0 0 0
]

where z =
[

y, ẏ, ψ, ψ̇
]T

is the state vector, u = δ is the

control input and t = y is the output of the system.

Since a highway scenario is considered, the model in (23)

was linearized considering a constant speed Vx = 120km/h.

Based on the linear state-space model given in (23), a pole

placement via state feedback method was applied to design

the PI controller.

IV. ILLUSTRATIVE RESULTS

In order to test the performances of the proposed control

algorithms, a three-lane platoon with three platoons running in

parallel on different lanes, each one with one leader and four

followers was chosen. As such, a simulator was developed

in Matlab/Simulink (Fig. 4) to observe the evolution of the

multiple-lane platoon and to test the performances of the

proposed control algorithms. In Fig. 5 one can observe the

trajectory of each vehicle in the platoon over a simulation of

400s (a small part of it is shown in Fig. 4), from which it

can be seen that the lateral control behaves very well. Note

that the parameters of the PI controller designed using a pole

placement method are: Kr = 0.2 and Ti = 2000.

For the DMPC longitudinal control, using the parameters

from [11], yielded K = 0.747 and τ = 22.95 in (18). The

control algorithm was designed with a control horizon Nc = 2
samples, a prediction horizon Np = 15 samples and using a

sampling period Ts = 0.1s.

The speeds of the vehicles in the middle-lane platoon are

illustrated in Fig. 6 for a variation of the leader speed, in

which it can be observed that the speed of the leader is always

the highest in module at a certain moment in time. The error

between the desired headway given by relation (16), with S0 =
1m, h0 = 0.25s, c0 = 0.01s and α = 0.1s, and the actual

headway is illustrated in Fig. 7. It can be seen that the errors

decrease along the platoon, which ensures the string stability

of the whole platoon. Moreover, in Fig. 8 the applied torques

are presented as applied by the vehicles in the middle-lane

platoon constrained at Tmax
e = 240Nm.

V. CONCLUSION

In this paper, a complete framework for multiple-lane pla-

tooning was proposed. Firstly, the longitudinal and the lateral

dynamics of the vehicle were presented. Then, based on these

models, a multi-agent DMPC algorithm was proposed for the

longitudinal control problem in a single platoon. This was

followed by a classical PI controller was proposed for the

lateral control of each vehicle in the multiple-lane platoon.

Several simulations realized using a simulator developed in

Matlab/Simulink illustrated the performances of the designed

multi-lane platoon. It was shown that the lateral control of the

vehicles was ensured, while also satisfying the string stability

of each individual single-lane platoon.
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