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MODULE 2 – PART 1
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For the FOPAM Workshop in collaboration with 
Leo Chiang and Richard Braatz
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OUTLINE 
Principal component analysis (PCA)
 History 
 Objective 
 [Workshop]

Partial least squares (PLS)
 Performs regression with collinearity in 

the input variables 
 Objective 
 [Workshop]

Canonical correlation analysis (CCA)

© S. Joe Qin
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Historical Perspective of PCA

Harold Hotelling formulated PCA in the modern form.
 Hotelling, H. (1933). Analysis of a complex of statistical 

variables into principal components. Journal of Educational 
Psychology, 24(6), 417-441.

© S. Joe Qin
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Historical Perspective
PCA and Machine Learning
 PCA (Pearson, 1901)
 Hebbian learning (1940s), unsupervised, to alter 

the weight between two neurons 
 ADALINE (Adaptive Linear Neuron, 1960) with sign 

nonlinearity 
 Multilayer neural networks (sigmoidal, late 1980’s)
 PCA is linear neural networks (Oja, 1992)

© S. Joe Qin

E. Oja (1992). Principal components, minor 
components, and linear neural networks, 
Neural Networks, 5, 927-935.

PCA mapping

kx
Loadings P

kt

t1k
t2k
t3k

Well defined 
PCs
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Data-driven process monitoring 

Sensors
MPC

controller

Sub
process 

Quality
metrics

disturbances 

PID
controllers

Sub-
process 

Process
monitoring 

datadata
PCA

Quality-
relevant 
monitoring

data

Quality
data
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Principal Components Analysis
PCA produces a low-dimensional 
representation of a dataset. 
 It finds a number of linear combinations of 

the variables that 
 have maximal variance, and 
 are mutually uncorrelated.

 PCA is a dimension reduction tool, thus 
useful for data visualization and 
exploratory analysis
 Process monitoring: detecting abnormal 

situations reflected by process data.

© S. Joe Qin
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Correlations/collinearity in Process Data

Collinearity can come from 
 Mass balance, energy balance
 Control-induced correlations, e.g., 
 Ratio control of air flow and fuel flow
 Feedback/feedforward control makes steam 

flow and water flow correlated

 Operational restrictions and safety 
constraints
 Excessive stack oxygen is necessary for safety,

but too much excess is a waste of energy 
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Data Correlation: feedwater, air flow, steam flow
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Data Matrix

x1, x2, ... xM --- M variables or features
N observations:

Block notation:

X

N

 
11 1

21 2
1 2

1

M

M
M

N NM

x x

x x

x x

 
 
  
 
 
 

X x x x

 
 


   

 



6

USC - 11

Correlation Analysis
Correlation coefficient tells one-to-one 

correlation

Correlation matrix for all pairs of variables 
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Often xi is centered to zero mean and unit 
standard deviation, i.e., si =1. Then

© S. Joe Qin
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Correlation coefficients 
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1. Scale X to zero mean and unit variance.

2. Initialize: 

3. Project or combine:

4. PCA objective:

5. Residuals:

6. Set i:=i+1 and return to 3 for the next component

X X1:

X X tpi i i i
T

  1

= Xi

pi
Tti

Principal Component Analysis (PCA)

max   T
i it t

1 2 1 2[ ] [ ]l l l M  P p p p P p p p 

   and  1T
i i i i i t X p p p

kx
Loadings P

kt

t1k
t2k
t3k
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Example: water and steam flow
 Large variance direction 

is easy to visualize
features in the data

© S. Joe Qin
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 PCs are orthogonal
 PCs are features from 

rotating the coordinates 
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Largest variance, the view is better
Minimum perpendicular distance

© S. Joe Qin

PCA achieves 
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PCA Summary

The PCs capture the maximum 
variance in the data
No output variables/labels –

unsupervised learning 
All variables respond to the PCs 

which are the latent, unmeasured 
variables

USC - 18 © S. Joe Qin

Boiler Data Example

Fuel

Air

P

NOx
O2
Pressure

Feed
waterSteam

Economizer
inlet temp.
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Input and Output (NOx) data
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Scaled to zero mean and unit variance

0 100 200 300 400 500 600 700
-5

0

5

Stack O2 
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PCA on the Boiler Data 
PCA on Fuel Flow; Windbox Pressure; 

Steam Flow; and Stack Oxygen (first 
200 observations) 
 Show the loadings in a table 
 Plot the scatter biplots (scores & loadings)
 Compare the biplots with and without 

variance scaling
 Plot the variances explained by each PC, 

Percent variance explained (PVE)

© S. Joe Qin
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p1 p2 p3 p4

Fuel Flow 0.5760 -0.0673 0.2007 0.7896

Stack Oxygen 0.0595 0.9962 0.0576 -0.0269

Steam Flow 0.5763 -0.0526 0.5809 0.5725

Windbox Pressure 0.5767 0.0169 0.7868 0.2193

© S. Joe Qin

PCA loadings

Note: the loading vectors are unit norm, 
orthogonal, and signs don’t matter
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PCA biplot: show scores and 
loadings together 

© S. Joe Qin

USC - 24 © S. Joe Qin

Scaling of the variables matters
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Cumulative Percent Variance with l PCs

Select the number of PCs to achieve 90% 
CPV:

© S. Joe Qin

1 1

CPV( )
l M

i i
i i

l  
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How many PCs should we use?
If we use PCs as a summary of our 

data, how many PCs are sufficient?
 No simple answer to this question

The “scree plot” on the previous slide: 
Look for an “elbow that touches the 
floor”.
 2 PCs is a good choice. 

NOTE: Sometimes the largest PC is not 
a feature of interest – domain 
knowledge helps here

© S. Joe Qin
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Advanced Material

© S. Joe Qin
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Properties of PCA
1) Scores are linear combinations of variables:       

2) Loadings are eigenvectors of the covariance matrix: 

with 1

3)  Both loadings and scores are  

0 and  0 

orthogonal
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PCA Relations per Observation 

For the k-th observation, 

 

1 2

1 2
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PCA Scores and Estimates
PCA ‘projection’ for the k-th sample:

A sample at k is mapped to the scores:

And the PCA residual: 

tk

(PT)

(P)

Mapping

Demapping

ˆ kx

kx

T
k kt P x

ˆ T
k k k x Pt PP x

ˆ ( )T
k k k k   x x x I PP x



16

USC - 31

Subspace Projection
PCS: Principal Component Subspace
RS: Residual Subspace

ˆ    = 

ˆand    




x x x

x x




RS

xx

PCS

x̂
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[WORKSHOP] on PCA

© S. Joe Qin
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Partial Least Squares (PLS)
We know that ordinary least squares 

(OLS) suffers from collinearity in X data
PLS reduces dimensions to avoid the 

negative impact of collinearity in X data
Unlike PCA, PLS uses Y to supervise 

the extraction of X components
PLS attempts to find the factor 

directions to explain both Y and X 
simultaneously. 

USC - 34

Partial Least Squares (PLS)

 Initializing: 

 Projections:     start from 

 PLS objective: maximizing covariance 

 Inner regression:

 Residuals:

XX :1 Y Y1:

X X t pi i i i
T

  1

Y Y t qi i i i i
Tb  1

max   where   and  T
i i i i i i i i t u t X w u Yq

=Xi wi ti =Yi qi ui

 Let              , PLS then iterates for the next factor 

 PLS extracts components by the size of the covariance

 T T
i i i i i i i i ib b   u t r u t t t

Inner model
where T T

i i i i ip X t t t

: 1i 

: 1i i 
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Selecting the number of PLS factors:
Cross-Validation or Train/test validation

 If all data are used for training the PLS 
model, the training error will decrease as 
more factors are used in the model
 Train/test validation (with lots of data) – use a 

portion of the data for training and the rest for 
testing

 Cross-validation (limited data OK) – split the data 
in s-fold; keep one of them for testing and the rest 
for training. This is done in turn. The smallest test 
error for a given number of factors leads to the 
right model

USC - 36

Cross-Validation Procedure 
 CV is used to select the number of PLS factors

 Data are split into s-fold. Build a model on (s-1) 
blocks, and calculate the predicted error sum 
of squares (PRESS) on the left-out block

 Final PLS Model: build PLS again with (a) 
factors using all data

X1

Y1

X4

Y4

X3

Y3

X2

Y2
...... Xs

Ys

a

PRESS

factors

bias

var
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Train/test Validation
 Divide all data into s=2 subsets

 Calculate the test error sum of squares

 Final PLS Model: run PLS again using all data

a

SSTe(l)

factors

2

1 1

ˆSS ( ) ( ( ))
y test

M n

Te ij ij
j i

l y y l
 

 

X2

Y2

X1

Y1

Test on Set 2 with a model built on Set 1

ˆwhere ( ) is the predicction using a model with  factorsijy l l
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Cross-Validation example: s=3
Divide all data into s=3 subsets and calculate the 
PRESS on the test set(i):

X1

Y1

X3

Y3

X2

Y2

3

1

Total: PRESS( ) PRESS( , ) 

for  1, 2, ,

s

i

l l i

l a
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Y1

X3

Y3

X2

Y2

X1

Y1

X
Y

X2

Y2

Test on 1 with a model built on 2 and 3

Test on 2 with a model built on 1 and 3

Test on 3 with a model built on 2 and 1

1
(1) (1) 2

1 1

ˆPRESS( , 1) ( ( ))
yM n

ij ij
j i

l s y y l
 

   

2
(2) (2) 2

1 1

ˆPRESS( , 2) ( ( ))
yM n

ij ij
j i

l s y y l
 

   

3
(3) (3) 2

1 1

ˆPRESS( , 3) ( ( ))
yM n

ij ij
j i

l s y y l
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Boiler Example: Scaled data
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Boiler Example for PLS
Using the first 200 data points and all 

input variables to model NOx
 Show the scores plots for first 4 factors
 Show the loadings plots for first 4 factors
 Use Data [201:350] as test set. Plot the 

test error of NOx vs. the number of factors
 Determine the number of factors to use
 Use the selected number of factors, 

predict data in [1:200], [201:350] and 
[351:end].  

© S. Joe Qin
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PLS Scores – Boiler Data

© S. Joe Qin
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PLS Loadings – Boiler Data

© S. Joe Qin

Variable Names

1. AirFlow 2. Fuel flow 3. Stack Oxygen

4. Steam Flow 5. Economizer Inlet Temp 6. Stack Pressure

7. Windbox Pressure 8.Feedwater Flow 9. Ambient Temp
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PLS differs from PCA loadings 
The first PC for the boiler data is similar, but 

the other PCs differ more
Sign differences don’t matter

© S. Joe Qin
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Test Error (PRESS if cross-validated)

© S. Joe Qin

Choose 3 factors for the PLS model
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PLS prediction 

© S. Joe Qin

USC - 46

Diagnosis (ambient temp not air-conditioned; 
data sampled at 5 min sampling rate)

© S. Joe Qin
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PLS Inner regression and correlation 
coefficients
Inner regression coefficients (b_i):

Inner correlation coefficients 

0.5234 0.0928 0.0888

0.3999 1.4084 0.4440

1.2486 0.5954 0.2869

0.9464 0.1820 0.0983

0.2599 0.1992 0.0953

0.1492 0.0445 0.0293

USC - 48© S. Joe Qin

PLS Inner relations –visualization and diagnosis: 
many points in [351:end] extrapolated
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What if we remove input 9 (ambient temp) since 
it has little variation when A/C is on, and redo 
the PLS model? 
Again three factors are needed. 

© S. Joe Qin

USC - 50

PLS prediction (without Input 9) 

© S. Joe Qin

We still see that the model is incapable of  
predicting the excursions in NOx.
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Comparison of two PLS models 

© S. Joe Qin

 No much difference from using 9 inputs.
 Training data need to cover all ranges. [e.g., 

add the last 100 points in training]

USC - 52

OUTLINE 
Principal component analysis (PCA)
 History 
 Objective 
 [Workshop]

Partial least squares (PLS)
 Performs regression with collinearity in 

the input variables 
 Objective 
 [Workshop]

What is canonical correlation analysis 
(CCA)?

© S. Joe Qin
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Canonical correlation analysis (CCA)

Again, it’s due to Hotelling!
 Hotelling, H., 1936: Relations between 

two sets of variants. Biometrika, 28, 
321-377.

Basic idea: maximizing correlation

© S. Joe Qin
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Canonical correlation analysis (CCA)
 Projections:

 CCA objective: maximizing correlation  

 Solution: 

max     where   and  
T
i i

i i i i
i i

 
t u

t Xw u Yq
t u

=Xi wi ti =Yi qi ui

   
   

1 1

1 1

 is an eigenvector of   

 is an eigenvector of    

T T T T
i

T T T T
i

 

 

w X X X Y Y Y Y X

q Y Y Y X X X X Y
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CCA vs. PLS
Unlike PLS, CCA does not need to deflate data 

matrices. It is a (generalized) eigenvector 
solution

Since CCA involves inverting matrices, it 
suffers from collinearity as least squares does

The solution is problematic when the number 
of data points is less than the number of 
variables
 Note: PLS was invented later (1977, 1982) by H. 

Wold

© S. Joe Qin

H. Wold, in A Second Generation of Multivariate Analysis, ed. by C. Fornell, 
p. 325, Preager, New York (1982)

USC - 56

More on CCA vs. PLS
The number of non-zero CCA components is 

equal to the smaller dimension of the input 
and output variables.
 When there is only one output, CCA needs one 

component only. Therefore, 
 CCA does not explore the X covariance structure 

as PLS does. 
 CCA is not recommended to use for process 

monitoring of X; use CCA-PCA for concurrent 
monitoring (Zhu et al., 2017)

CCA can be used as inferential sensors to 
predict Y, but regularization is needed

© S. Joe Qin

Qinqin Zhu et al. (2017). Concurrent Quality and Process Monitoring with 
Canonical Correlation Analysis. Journal of Process Control, 60, 95-103.
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SUMMARY
PCA is a dimension reduction tool that 

extracts features with the most variance
 Unsupervised learning
 Visualization of loadings and scores with biplots

PLS maximizes covariance between two sets 
of variables 
 Robust to collinearity; supervised learning 
 Needs more than one factor for one output

CCA maximizes correlation between two sets 
of variables
 Suffers from collinearity; supervised learning 
 Needs only one factor for one output

© S. Joe Qin
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[WORKSHOP] on PLS and CCA
PLS - Model on boiler data [1:350]
 How many factors do you need? [hint: 

cross-validation]
 Plot inner relations for the first four factors
 How good are the predictions on [351:end]?

CCA - Model on boiler data [1:350]
 How many factors can you extract? [hint: 

only one since there is only one output.]
 How good are the predictions on [351:end]?

© S. Joe Qin
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MODULE 2 – PART 2 

PROCESS MONITORING USING

PRINCIPAL COMPONENT ANALYSIS

S. Joe Qin

For the FOPAM Workshop in collaboration with 
Leo Chiang and Richard Braatz

Reference: S.J. Qin (2003).  Statistical process monitoring: basics and 
beyond, J. Chemometrics, 17, 480-502.
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PCA

PLS

Linear regression

Lasso; Ridge reg.

CCA

YX

Regularized

Reduced
rank regression

Y

X
Collinear

Monitoring;
Visualization

DiCCA, DiPCA

DiPLS Y

X
Dynamic

Dynamic 
components

Dynamic

Clustering

Classification Y

X
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K-means; HC

Categorical

Neural nets

Y

X
Nonlinear

Deep 
learning

NonlinearNeural nets

LDA, SVM, LR

Input data 
Massive 

Label data 
Output
Supervising
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Scope
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OUTLINE 
Process Monitoring 
Fault detection 
 Squared prediction error (SPE) or Q
 T2 index

Fault Contribution Analysis 

© S. Joe Qin
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Multi-rate Control and Monitoring 

MPC
control

Sub-process 
Quality data
with delay

Disturbances 

PID control

Sub-process

data

Process 
monitoring

data
data

e.g., PCA

data

Quality-
relevant  
monitoring

Quality 
monitoring
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Characteristics of Process Operations

Data rich, with various time scales and 
sources 

Multi-level objectives for control and 
operations co-exist

Soft, operational faults happen more often 
and costly

Few operators responsible for large 
operations 

USC - 6

Statistical Process Monitoring 
Use PCA to extract principal  components 

residuals from normal data. 
Derive ‘normal’ control regions for the principal 

component and residual spaces.
Detect and diagnose anomalies in new data

x2

x1

p1

p2

normal region

abnormal
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Island
Island

Island
Island

Dock
Boat

Wind, current
(Uncertain)

Data-driven Methods -
A Simple Illustrative Example

USC - 8© S. Joe Qin

Island

Dock

Island
Island

Boat

Wind, current
(Uncertain)

Fault Detection - A Motivating Example
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PCA Scores per Observation - recap

A sample at k is mapped to the score space:

PCA projection for the k-th sample:

PCA residual: 

       (similarly, )T T
k k k k t P x t P x

ˆ T
k k k x Pt PP x

ˆ ( )

   

ˆ    ( )

T
k k k k

T T T

T T
k k k k k

   

         
     

x x x I PP x

P P P P PP PP I

x x x I PP x PP x
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PCA based Fault Detection

 PC scores and residuals are monitored with 
different statistics

 Hotelling’s T2: monitor the PC scores for the 
k-th observation,

contains the major eigenvalues of Cov(x).
Q index, a.k.a. squared prediction error, SPE: 

monitor the residuals, 

( )T T T T T
k k k k k k k

T
k k

Q    



t t x PP x x I PP x

x x

  

 

2
2 1 1

1

l
T T T ki

k k k k k
i i

t
T


 



     t t x P P x

Λ
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Hotelling’s T2 Control Limit 

2
2 1 2 2

1

Assuming ( , ), the (1 ) 100% control limit is

( )
l

T ki
k k k

i i

t
T l 



 






 

   

t 0 Λ
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1t
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 1 2 1 2

2 2
2 21 2
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For example, , { },
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Chi-square distribution
The chi-square distribution (χ2-distribution) 
with k degrees of freedom is the distribution of 
a sum of the squares of k independent 
standard normal random variables.

© S. Joe Qin



7

USC - 13

A Simple SPE Control Limit 

2

Assuming ( , ) , the SPE control limit 

with (1- ) confidence is

 SPE ,    where ( )T T g h  
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Box Theorem for Control Limits  
Box (1954) gives an approximate distribution

2

2

Assuming  is multi-normal,   approx. ( ),

and the  control limit with (1- ) confidence is

       ,    where ( )
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g h

g h  
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Different treatments of SPE and T2
The variances of the PC scores are 

large and different from one another
 The T2 index control region is an ellipse; it 

involves inverses of the PC variances  

The variances of the residual scores 
are tiny and some are close to zero
 T2 index would invert the tiny variance, 

making it too sensitive to uncertainty in the 
variance estimation. 
 Therefore, no inverse is used in SPE. 

© S. Joe Qin
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Example:   -x1=x2=x3 plus noise:
SPE control region is often tight, more 
sensitive to faults
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Original variable space
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Summary of PCA for Fault Detection
A sample of normal data with good coverage 

of the normal variations
 Pre-processing, missing data and outlier 

treatment, scaling, etc., are necessary

Perform PCA with a chosen number of PCs
Calculate control limits for SPE, T2
For new observations, use control charts to 

detect faults
Fault diagnosis follows after detecting a fault 

© S. Joe Qin

USC - 18

[DEMO] T2 region is an ellipse

Use the wafer critical dimension (CD) data for 
3 sites, from M. Joshi and K. Sprague (1997). 
It’s a photo process in semiconductor 
manufacturing. We perform 
PCA – preliminary analysis using all data
Recalculate control limits using normal data
Show control charts after deleting bad wafers
Show contribution analysis for wafers detected 

with T2 and SPE

© S. Joe Qin

Data Sites on a Wafer
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The Photo Problem 
In mid-80’s, managers at DEC asked process 

engineers to bring SPC to semiconductor 
manufacturing. When engineers tried using 
the text book approach, the results were 
disastrous: too many charted points outside 
of the apparent SPC limits
Semiconductor manufacturing has numerous 

batch processes. Consequently, statistical 
methods listed in the vast majority of SPC 
publications did not apply directly.

© S. Joe Qin

USC - 20

Variables (CD) vs. sample number

© S. Joe Qin
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PCA – preliminary analysis

© S. Joe Qin

Number of  PC is 2 (90% variance)

T2 plot for 2 PCs

USC - 22

T2 and SPE control charts
The control limits are OK, but we should 
recalculate them using normal data only

© S. Joe Qin

Only 1 PC 
in the SPE
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Recalculate T2 and SPE control limits 
after removing bad wafers 

USC - 24

OUTLINE 
Recap of PCA
Fault detection 
 Squared prediction error (SPE)
 T2 index
 Combined index

Fault Contribution Analysis 

© S. Joe Qin
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SPE Contribution Plots
SPE contributions:

 Variables with large contributions are likely the 
causes of the fault

 Contributions ‘smear’ a fault in one variable to 
other variables, but are often effective

 Contributions are sensitive to scaling, so it is 
important to scale variables appropriately 

2

1

2

Since  ,

is the contribution to  from the  -  variable

M
T

i
i

i i

SPE x

SPE x

SPE i th



 



x x  
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Contributions for T-square

T2 contribution is not easy to define
 Nomikos (1997) defines a T2 contribution that 

expands one side of the index only, 

Reconstruction-based contributions (RBC) is 
an alternative (Alcala and Qin, 2009)

2

2

1

2  is defined as the contribution of Variable .

 is the i-th row of ,   1, , .

i

M
T T T T

i i
i

T

i i

T
i

T x

T x

i M

 



   



1 1x P P x p P x

p P





Carlos Alcala and S. Joe Qin (2009). Reconstruction-based Contribution for 
Process Monitoring, Automatica, 45, 1593-1600.
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Example: T2 and SPE contributions

© S. Joe Qin

T2 out of control wafer: 40 – Site 2 is the problem
SPE OOC wafers: 15, 40, 48, 69 – Site 1 stands out in 
the residuals 

USC - 28

Multi-way or batch data monitoring 
Unfold to matrices to perform PCA
 Be aware that the measurement dimension 

is very high after unfolding, requiring a 
large number of PCs
 The confidence level is usually chosen 

very high accordingly 

© S. Joe Qin
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PCA for Monitoring 
Check the link
https://weiusc.shinyapps.io/contribution
s-reconstruction-8/

© S. Joe Qin
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Module 2 – Part 3

DYMANIC COMPONENT MODELING 
FOR MULTIVARIATE TIME SERIES 

– Dynamic PCA, PLS, CCA

S. Joe Qin

For the FOPAM Workshop in collaboration with 
Leo Chiang and Richard Braatz

USC - 2© S. Joe Qin

PCA

PLS

Linear regression

Lasso; Ridge reg.

CCA

YX

Regularized

Reduced
rank regression

Y

X
Collinear

Monitoring;
Visualization

DiCCA, DiPCA

DiPLS Y

X
Dynamic

Dynamic 
components

Dynamic

Clustering

Classification
Y

X
Clustered

K-means; HC

Categorical

Neural nets

Y

X
Nonlinear

Deep 
learning

NonlinearNeural nets

LDA, SVM, LR

Input data 
Massive 

Label data 
Output
Supervising

Part 2.3 
Scopes 
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Detect faults in dynamic data
PCA based monitoring can detect a fault that 

breaks cross-correlation.
 dynamic time-correlation can reveal more 

information 

3
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Dynamic data: identify causes 

Dynamic PCA extracts auto-correlations

4
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Univariate time series modeling
Auto-regressive (AR) model 

© S. Joe Qin

  2

1

1 1

;    where  is white noise with variance .

We define  using a backward shift operator, 

the AR model is 

;       or   (1 )
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Auto-regressive moving average (ARMA) model 

 
1

2

1 1

1

1 1

;  

  where  is white noise with variance .

Using the backward shift operator, the ARMA model is 

   (1 ) (1 )
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ARIMA function in R

Realizations of three autoregressive 
processes, two AR(1) and one AR(2)

© S. Joe Qin

>ar1neg = arima.sim(list(order=c(1,0,0), ar=-.9), n=100)
>ar1pos = arima.sim(list(order=c(1,0,0), ar=.8), n=100)
>ar2 = arima.sim(list(order=c(2,0,0), ar=c(-.5,.3)), n=100)

USC - 8

An example: a dynamic signal and its residual 

© S. Joe Qin

> ar2 = arima.sim(list(order=c(2,0,0), ar=c(.0,.99)), n=100) 
> plot(ar2) 
> ar_est = arima(ar2,order=c(2,0,0))
> plot(residuals(ar_est))

Dynamic time 
series has 
predictable content 

The residuals are 
white and 
appropriate for 
monitoring 
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Dynamic Component Modeling 

9

With auto-correlated time series , extract a 
latent variable that is most auto-correlated, 
or predictable

The latent variable is a linear combination of 
the original variables  
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Example: Oxide thickness data 
Multiple scans per wafer 

© S. Joe Qin
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X X tpi i i i
T

  1

Principal component analysis focuses 
on variance in the component only

max   where   and  1T T
i i i i i i i t t t X p p p

=Xi pi ti

= +Xi

pi
Tti

Xi+1

Find a projection 
to maximize the 
variance of the 
scores

USC - 12

Dynamic PCA: Simple augmentation 
Augment X with lagged measurements

 Perform PCA on Xg,i

 Dimension increases
dramatically

 The PC scores have the most variance, but not 
necessarily dynamic

© S. Joe Qin

Xi,0 =pi tiXi,1 Xi,2 Xi,s

* Ku, W., Storer, R., & Georgakis, C. (1995). Disturbance detection and isolation by dynamic principal 
component analysis. Chemometrics and Intelligent Laboratory Systems, 30, 179.

Xg,i
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Dynamic inner PCA (DiPCA) 
(Dong and Qin, 2016)

Linearly combine the measurements, then 
augment the past scores to predict the future

DiPCA objective
The extracted dynamic t scores is most predicted 
by its past values in terms of 

© S. Joe Qin

X = tw it1 t2 ts

1
ˆ ˆmax   where ,      ( , , , )

subject to     1  and 1

Calculate the residual and extract the next component

T
s

T T

AR 

 

t t t Xw t t t β

w w β β
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Dynamic Component Modeling

High dimensional data are driven by a 
few dynamic components, which are not 
measured directly.

DiPCA extracts the most dynamic , i.e., 
most predictable components from 
data, one after another
 DiPCA distills the multi-dimensional data 

into dynamic components, in descending 
order of predictability 

© S. Joe Qin
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Extensions to Dynamic PLS and CCA

 Initializing: 

 Projections:

 PLS objective:

 Residuals:

XX :1 Y Y1:

X X t pi i i i
T

  1

Y Y t qi i i i i
Tb  1

max   where   and  T
i i i i i i i i t u t X w u Yq

=Xi pi ti =Yi qi ui

* :   cannocial correlation analysis does 

max ,  where   and  
T
i i

i i i i i i

i i

Note

 
t u

t X w u Yq
t u

Inner model

USC - 16

Dynamic-inner PLS: extract an LV in Y that 
co-varies most with an LV in X
 Initializing: 

 Projections:

 Dynamic PLS objective:

 Residuals:

 The order of            can vary from factor to factor

XX :1
Y Y1:

1

1 2

max [ ( ) ];  where   and  

( ) ;   1;   1;     1

T
i i i i i i i i i

j
i ij ij i i

g q

g q q 



 

 

    
u t t X w u Yq

w q

=Xi pi ti =Yi qi ui

X X t pi i i i
T

  1

Y Y t qi i i i i
Tb  1

Inner model 
replaced with

1( )i ig q t

* Y. Dong, S. Joe Qin (2015). IFAC ADCHEM, Paper MoM3.5.

1( )ig q
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DiCCA (Dong and Qin, 2017), CACE paper

Linearly combine the measurements, then augment 
the past scores to predict the future

 DiCCA objective
The extracted dynamic t scores is most predicted by its past 
values in terms of 

© S. Joe Qin

X = tw it1 t2 ts

1

ˆ
ˆmax   where ,      ( , , , )

ˆ

Calculate the residual and extract the next component

T

sAR 
t t

t Xw t t t β
t t



Dynamic-inner CCA (DiCCA): extract an LV 
in Y that is most correlated with an LV in X

USC - 18

Dynamic-inner CCA (DiCCA) Algorithm

* Y. Dong and S. Joe Qin (2017). CACE
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Demonstration on Eastman Data
Oscillatory dynamics are of concern

© S. Joe Qin
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Thornhill et al. (2003)

© S. Joe Qin
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Dynamic Data Distillation

DiPCA/DiCCA

© S. Joe Qin
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First two factors

DiCCA reveals oscillations with two 
distinct frequencies 

© S. Joe Qin
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DiCCA Monitoring based on Prediction

© S. Joe Qin

T2 limit from PCA is not suitable for the circular distribution  

USC - 24

Analysis Details on Eastman Data

© S. Joe Qin
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Features in dynamics and time scale are separated
- three features: 24 hours, 2 hours, and 6 minutes

© S. Joe Qin

USC - 26

Zoom in on 500 data points (2.3 hrs)

© S. Joe Qin
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First DLV of 24 hours cycle
- Ti3 – condenser outlet temp
- TC1.OP – controller output of column 1 temp
- TC1.PV – controlled column 1 temp

© S. Joe Qin

USC - 28

Process/control loops involved in DLV1
 DLV1 is most weighted 

with TI3.PV, condenser 
outlet temperature 

 TC1.OP and TC1.PV are 
equally weighted in DLV1, 
due to TC1.OP controlling 
the recycle flow to the 
condenser 

 TC1.PV is weighted in to
cancel large oscillations in
TC1.OP, but does not have 
the 24 hour cycle

 The other variables have 
little weights

© S. Joe Qin
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Concluding Remarks
High dimensional time series data can be 

handled properly now
 Dynamics are useful for prediction
 The residuals facilitate proper inference 

Process/control knowledge is needed  
The control community understands 

dynamics well to use dynamic data tools
More applications on the horizon 
 Troubleshooting, on the fly (streaming) 
 Control performance diagnosis, as unstable 

factors come out first
 High-D Simulation data visualization 
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Module 2 – Part 4

Classification Methods: 
Discriminant Analysis and 
Support Vector Machines

S. Joe Qin

For the FOPAM Workshop in collaboration with 
Leo Chiang and Richard Braatz

2 © S. Joe Qin© S. Joe Qin
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 Output variables take qualitative values in a set C, such as

 Given a feature vector X and a qualitative response Y, the 
classification task is to predict the category of Y (default) 

Classification – Supervised learning 

}

eye color brown,blue,gree{

{

n

quality pass, l

}

fai
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Discriminant Analysis
 Here the approach is to model the distribution of X in 

each of the classes separately, and then use Bayes 
theorem to obtain Pr(Y|X).

 When we use normal (Gaussian) distributions for each 
class, this leads to linear discriminant analysis (LDA).

 LDA can work for more than two classes, and provides 
low-dimensional views of the data.
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Bayes theorem for classication

Bayes theorem

where

is the density for X in class k. 

Here we use a normal distribution density for each class.

is the prior probability for class k.

1

( )
( | )

( )

k k
K

l l
l

P X
f x

f x
r Y k x






 



( ) ( | ) Prkf x X x Y k  

 Pr( )k Y k  

6 © S. Joe Qin

Example with µ1 = −1.5, µ2 = 1.5, π1 = π2 = 0.5, and σ2 = 1.
Typically we don’t know these parameters; we just have the training 
data. In that case we simply estimate the parameters and plug them 
into the rule.

Linear Discriminant Analysis when p = 1
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Estimating the parameters

:

2 2
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Linear Discriminant Analysis when p > 1

Density:

   11

2
1/2/2

1
( ) e

(2 )

T
x x

p
f x

 



   




Discriminant function:

Despite its complex form, it is:

1 11
( ) log

2
T

k k k k kx x         

0 1 1 2 2  .( ..)  k k k k kp px c c x c x c x a linear function     
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Illustration: p = 2 and K = 3 classes

Here π1 = π2 = π3 = 1/3.
The dashed lines are known as the Bayes decision boundaries.
The dashed lines are based on data. 

10 © S. Joe Qin

Fisher's Iris Data

LDA classifies all but 3 of the 150 training samples correctly

4 Variables
3 species
50 samples/class
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Fisher's Discriminant Plot

Like PCA

 When there are K classes, linear discriminant analysis can be 
viewed exactly in a K−1 dimensional plot.

 When K>3, we can find the “best” 2-dimensional plane for 
visualizing the discriminant rule.

12 © S. Joe Qin

Types of Errors

False positive (false alarm) rate: The fraction of negative 
examples that are classified as positive — e.g., 0.2%.
False negative (missed detection) rate: The fraction of 
positive examples that are classified as negative — e.g., 
5.7%.

We can balance the two error rates by tuning the 
threshold
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Support Vector Machines

 We try to find a hyperplane that separates two 
classes in feature space.

 If we cannot, we get creative in two ways:
– We soften what we mean by “separates”, and

– We enrich and enlarge the feature space so that 
separation is possible

14 © S. Joe Qin

Hyperplane in 2 Dimensions
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Separating Hyperplanes

▪ If                                                 , then f(X)>0 for points on one 

sides of the hyperplane, and f(X)<0 for points on the other.

▪ If we code the colored points as Yi=+1 for blue, and Yi=-1 for 

mauve, then if Yif(Xi)>0 for all i.

f(X)=0 defines a separating hyperplane

0 1 1 2 2( ) p pf X X X X       

16 © S. Joe Qin

Maximal Margin Classifier
Among all separating hyperplanes, find the one that makes 
the biggest gap or margin between the two classes.

Constrained optimization 
problem
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Non-separable Data

The data on the left are 
not separable by a linear 
boundary.

The support vector classifier maximizes a soft margin.

18 © S. Joe Qin

Support Vector Classifier
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C is a regularization parameter

20 © S. Joe Qin

Linear boundary can fail

Sometime a linear 
boundary simply won’t 
work, no matter what 
value of C.

The example on the left 
is such a case.

What to do?
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Cubic Polynomials

▪ Here we use a basis 
expansion of cubic 
polynomials
▪ Form 2 variables to 9
▪ The support-vector 
classifier in the 
enlarged space solves 
the problem in the 
lower-dimensional 
space

2 2 3 3 2 2
0 1 1 2 2 3 1 4 2 5 1 2 6 1 7 2 8 1 2 9 1 2 0X X X X X X X X X X X X                  

22 © S. Joe Qin

Nonlinearities and Radial Kernel

2
' '

1

( , ) exp( ( ) )
p

i i ij i j
j

K x x x x


  

0 ˆ( ) ( , )i i
i S

f x K x x 


 

Implicit feature space;
very high dimensional.

Better than the cubic 
polynomials, which can 
get wild.
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Summary - Which to Use

 For multi-class problems, LDA is popular. 

 For nonlinear boundaries, kernel SVMs are popular.

 For two-class problems, 

can we simply perform a linear regression of Y on X and 
classify as Yes if            ?

 It’s not so bad; PLS-DA does this  

 But linear regression can produce probabilities less than 
zero or bigger than one. Logistic regression is more 
appropriate.

ˆ 0.5Y 

0 if

1 i

No

Yef s
Y
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Linear versus Logistic Regression (LR)

 LR uses

 The orange marks indicate the response Y, either 0 or 1. 
Logistic regression seems well suited to the task.

  1

1 1

Y

Y Y

e
P X

e e 
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[WORKSHOP] Classify Federalist Papers

 Using SVM and LDA for the Federalist data set

The Federalist Papers were written in 1787‐1788 by Alexander Hamilton, John 
Jay, and James Madison to persuade the citizens of the State of New York to 
ratify the U.S. Constitution.

The data set has 56 papers written by Hamilton, 50 papers written by 
Madison, and 12 disputed paper. There are 70 variables that correspond to the 
relative frequencies (number of occurrences per 1000 words of the text) of the 
70 function words.  We want to select a pair of words and use them to 
determine the authors of the 12 disputed papers.

up
on

SVM
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1 ꞏ

Module 2 – Part 5 

Nonlinear and Neural Network 
Extensions to “Latent Variables”

S. Joe Qin

For the FOPAM Workshop in collaboration with 
Leo Chiang and Richard Braatz

2 © S. Joe Qin© S. Joe Qin

PCA

PLS

Linear regression

Lasso; Ridge reg.

CCA

YX

Regularized

Reduced
rank regression

Y

X
Collinear

Monitoring;
Visualization

DiCCA, DiPCA

DiPLS Y

X
Dynamic

Dynamic 
components

Dynamic

Clustering

Classification Y

X
Clustered

K-means; HC

Categorical

Neural nets

Y

X
Nonlinear

Deep 
learning

NonlinearNeural nets

LDA, SVM, LR

Input data 
Massive 

Label data 
Output
Supervising

Part 2.5 
Scope 
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Introduction  

Real world data is usually nonlinear

When it’s nonlinear, use 
– polynomials,

– splines,

– local regression, or

– neural networks

These methods offer a lot of flexibility, but 
need to watch for overfitting.

© S. Joe Qin
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Neural Networks – Multilayer Perceptron 

Inputs Outputs

Bias
1

1

input layer

hidden layer

output layer
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Neural Networks

Capable of representing any continuous 
nonlinear functions

Typically one hidden layer; could be more
– Deep learning uses much more!

Transfer functions are typically sigmoidal, radial 
basis, or ReLU (rectified linear unit)

If both inputs and outputs represent the same 
signals, it is known as auto-associative networks 

– nonlinear principal components (Kramer, 1991)

– Also known as auto-encoder (LeCun, 1987)

– unsupervised learning

6 © S. Joe Qin

Unsupervised, auto-associative networks
 Kramer (1991). Auto-associative networks

 Dong and McAvoy (1996). Principal curves for NLPCA

 Tan and Mavrovouniotis (1995) input training network 

Bias
1

1

input layer

hidden layers

1
1

Output layer

bottleneck 
layers
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Neural Net PLS
 NNPLS uses neural nets as inner models. Each factor 

may use a different number of hidden neurons, 
depending on the nonlinearity (Qin and McAvoy, 1992)

X

T

(Q)

(P)

U

Y

NNPLS

X

T

(B)

(Q)

(P)

U

Y

inner model

outer model

PLS

8 © S. Joe Qin

NNPLS vs PLS inner model

First inner model with NNPLS
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First inner model with PLS
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Soft Sensors/Inferential Sensors
 Inferential sensors: Neural nets are used to map on-line 

process measurements to hard-to-measure quality 
variables

 Sensor validation block is often required to validate and 
replace faulty sensors

Process inputs
Process

Process output

Output prediction
Soft
Sensors

x1
x2

xm
y

ŷ
Sensor
Validat.

10 © S. Joe Qin

Summary

 Neural Networks found their applications in 
inferential sensors and nonlinear model 
predictive control

 Deep learning is an extension of neural net 
learning techniques, but it uses many layers; 
difficulty in interpreting 

 Convolution neural nets (CNN) – a special 
structure for image processing to build in a 
scanning window structure for images, 
instead of a huge fully connected net
– Applying CNN to model high dimensional time 

series data does not make much sense 
– Time series model is 1-D convolution already!
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Exponentially weighted moving average (EWMA) controllers are the most commonly used run-to-run
controllers in semiconductor manufacturing industry. An EWMA controller can be implemented in two
different ways. One way is to keep the process gain as its off-line estimate and update the intercept term
at each run, which is termed EWMA with intercept adaptation; the other is to keep the intercept term as
its off-line estimate and update the process gain at each run, which is termed EWMA with gain adapta-
tion. Despite the fact that gain variation and adaptation is typical in semiconductor industry, most EWMA
formulations are for intercept adaptation and few results exist on the stability and sensitivity of EWMA
with gain adaptation. In this paper, we propose a general formulation to analyze the stability of both
EWMA controllers. The proposed state-space representation not only reveals the similarities and differ-
ences between two types of EWMA controllers, but also explains why the stability conditions for both
types of EWMA controllers are independent of process disturbances. In addition, we propose a general
framework that unifies the analysis of the optimal control performance for both types of EWMA control-
lers. The proposed framework is different from existing approaches in that it decouples the state estima-
tion from the control law, and derives the optimal weighting based on the state estimation performance.
The proposed framework significantly simplifies the analysis procedure, especially for EWMA with gain
adaptation. Using this framework, we derive the optimal EWMA weighting through solving the discrete-
time algebraic Riccati equation (DARE) for various process disturbances that are encountered in semicon-
ductor manufacturing industry. Simulation examples are given to illustrate the optimality of the EWMA
weighting derived using the framework. Some practical aspects of controller tuning are also discussed
based on the simulation results.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their simplicity and robustness, exponentially weighted
moving average (EWMA) controllers are the most commonly used
run-to-run feedback controllers in semiconductor manufacturing
processes [1–4]. In general, an EWMA controller uses a linear
regression model of a process obtained based on off-line experi-
ments or historical data (as shown in Eq. (1)). During on-line esti-
mation and control, one of the model parameters (i.e., intercept or
gain) is updated using EWMA statistics with newly observed pro-
cess data, then the control move for the next run is calculated using
the updated process model.

Consider a single-input-single-output (SISO) linear model

y½n� ¼ aþ bu½n� þ �½n� ð1Þ
ll rights reserved.

: +1 334 844 2063.
where a and b are model parameters, �[n] is the process disturbance
sequence, u[n] is the input to the process at the beginning of run n,
and y[n] is the output of the process at the end of run n.

An EWMA controller with intercept adaptation, denoted as
EWMA-I controller, can be formulated as the following:

a½nþ 1� ¼ xðy½n� � bu½n�Þ þ ð1�xÞa½n� ð2Þ

u½nþ 1� ¼ T � a½nþ 1�
b

ð3Þ

where b is the off-line estimate of b, a[n + 1] is the on-line estimate
of a that is updated after each run, x is the EWMA weighting and T
is the target of the process output. EWMA-I controllers have many
applications in the semiconductor manufacturing industry, such as
lithography overlay control, and its properties have been studied
extensively, e.g., see [1,3,5–7]. Among the existing results,
Ingolfsson and Sachs analyzed its stability and sensitivity for
white noise and deterministic drift disturbances [5], Del Castillo
analyzed its properties for random walk, integrated moving average

http://dx.doi.org/10.1016/j.jprocont.2009.06.002
mailto:wang@auburn.edu
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
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(IMA(1,1)) and deterministic trend drift with random walk distur-
bances [6]. In the existing analyses, it was shown that for all the dis-
turbances that have been examined specifically, the stability
condition for an EWMA-I controller is always 0 < xb

b < 2.
On the other hand, in practice an EWMA controller is often

implemented in a different way for processes with varying process
gains. Specifically, the process gain, instead of the intercept, is up-
dated using EWMA statistics in a run-to-run manner. Examples of
such applications include chemical mechanical polishing (CMP)
process where the polishing rate is updated [8–10]; chemical vapor
deposition (CVD) process where the deposition rate is updated
[11]; and etch process where the etch rate is updated [12,13].
For an EWMA controller with gain adaptation (denoted as
EWMA-G controller), the control law and the state estimation
equations become the following:

b½nþ 1� ¼ x
y½n� � a

u½n� þ ð1�xÞb½n� ð4Þ

u½nþ 1� ¼ T � a
b½nþ 1� ð5Þ

where a is the off-line estimate of a and b[n + 1] is the on-line esti-
mate of b.

Although EWMA-G controllers have been applied more often
than EWMA-I controllers in practice, little research has been con-
ducted to understand their properties. Wang and He [14] analyze
the behavior of an EWMA-G controller for white noise and deter-
ministic drift disturbances, and find that there are some interesting
similarities between EWMA-G and EWMA-I controllers. For exam-
ple, the stability condition for EWMA-G controller for both types of
disturbances is 0 < T�a

T�a x < 2, which has a similar expression as the
stability condition for EWMA-I controller, i.e., 0 < b

b x < 2. In addi-
tion, the output variance for a process with white noise distur-
bance controlled by the EWMA-G controller is the same as that
controlled by the EWMA-I controller. On the other hand, there
are some differences between the two types of EWMA controllers.
For example, for unstable cases where the estimated state se-
quences of both EWMA controllers become unbounded, the pro-
cess outputs show completely different behaviors: the process
output controlled by EWMA-I becomes unbounded, while the pro-
cess output controlled by EWMA-G converges to the process inter-
cept, and remain bounded.

In this work, we study the properties of the EWMA-G controller
systematically by examining its behavior in rejecting different dis-
turbances, and comparing it with that of the EWMA-I controller. We
examine four different disturbances, namely, white noise (WN),
integrated moving average (IMA), deterministic drift with white
noise (DD-WN) and deterministic drift with integrated moving
average (DD-IMA). Section 2 gives problem formulation and the
mathematical description of the four disturbances. In Section 3,
we develop a general formulation to analyze the stability of the
closed-loop system controlled by both EWMA-G and EWMA-I con-
trollers. The formulation enables us to reveal and explain the simi-
larities and differences between the two types of EWMA controllers.
In Section 4, we propose a general framework based on the Kalman
filter formulation to analyze the sensitivity of both types of control-
lers. By decoupling the state estimation from the feed back control
law, the framework unifies the analysis of optimal control perfor-
mance for both types of EWMA controllers. Optimal EWMA weigh-
tings are also derived for different process disturbances. Simulation
examples are given in Section 5 to illustrate the results obtained in
this work, and Section 6 summarizes the paper.

2. Problem formulation

In this work, the analysis is limited to linear, single-input-sin-
gle-output processes, as vast majority of the run-to-run controllers
in semiconductor industry utilize such a simple process model.
However, similar analysis can be extended to MIMO processes,
which is not within the scope of this work. To facilitate the com-
parison of EWMA-G with EWMA-I controllers, we modify the pro-
cess model Eq. (1) slightly to combine the process disturbances
with the corresponding state that is updated at each run.

For EWMA-I,

y½n� ¼ a½n� þ bu½n� ð6Þ

For EWMA-G,

y½n� ¼ aþ b½n�u½n� ð7Þ

where a[n] and b[n] are process disturbances. It is worth noting that
measurement noise is not explicitly considered in Eqs. (6) and (7)
because it can be combined into the disturbance. The mathematical
descriptions of four different disturbances considered in this work
are given below, where w[n] denotes a white noise sequence with
variance r2. The following mathematical descriptions apply to both
a and b, i.e., e[n + 1] could be either a[n + 1] or b[n + 1].

1. White noise disturbance (WN)

e½nþ 1� ¼ w½nþ 1� ð8Þ

2. Integrated moving average disturbance (IMA)

e½nþ 1� ¼ e½n� þw½nþ 1� � kw½n� ð9Þ

where k 2 [0,1] is a constant. Notice that if k = 0, an IMA disturbance
reduces to a random walk (RW) disturbance.
3. Deterministic drift with white noise disturbance (DD-WN)

e½nþ 1� ¼ ðnþ 1Þdþw½nþ 1� ð10Þ

where d is the drifting slope.
4. Deterministic drift with integrated moving average disturbance

(DD-IMA)
e½nþ 1� ¼ e½n� þ dþw½nþ 1� � kw½n� ð11Þ

Similar to the case of IMA disturbance, when k = 0, a DD-IMA distur-
bance reduces to a deterministic drift with random walk (DD-RW)
disturbance.

It is obvious that the first two disturbances are special cases of
the last two disturbances with the deterministic drift slope d = 0. In
this work we keep them as separate cases because the optimal con-
trollers derived for the first two cases are EWMA controllers while
the optimal controllers derived for the last two disturbances are
double-EWMA controllers.
3. Stability condition for EWMA controllers

The stability condition for EWMA-I controllers has been well
studied. For processes controlled by EWMA-I controllers with
white noise or deterministic drift disturbances, Ingolfsson and
Sachs [5] expressed the process output as an infinite power series
and derived the stability condition based on the convergence of the
infinite series. For processes controlled by EWMA-I controllers
with RW or IMA disturbances, Del Castilo [6] derived the stability
condition by examining the asymptotic mean squared deviation of
the process output from the target and obtained the same stability
condition, i.e., 0 < b

b x < 2. For the stability condition of EWMA-G
controllers, Wang and He [14] analyze the processes with white
noise and deterministic drift disturbance by deriving the expres-
sion of process output as an infinite power series, and find that
the same stability condition, i.e., 0 < T�a

T�a x < 2, apply to both
disturbances.

In this section, we develop a general formulation to analyze the
similarities and differences of the stability conditions of EWMA-I
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and EWMA-G controllers by examining the closed-loop pole, in-
stead of the process output under closed-loop control as in existing
work. In this way, the specific disturbance dynamics will not be
incorporated and the results apply to all types of disturbances.

Without loss of generality, we assume that the process target T
is zero in the rest of the paper, as the intercept term a can always
be shifted. First, we consider the closed-loop process in Eq. (7) con-
trolled by an EWMA-G controller. By plugging the control law (Eq.
(5)) into Eqs. (4) and (7), we can formulate the closed-loop system
into the following state-space representation:

b½nþ 1� ¼ 1� a
a
x

� �
b½n� þxb½n� ð12Þ

y½n� ¼ � ab½n�
b½n� þ a ð13Þ

which has a linear state equation but a nonlinear output equation.
Note that in Eqs. (12) and (13), the estimated process disturbance
b[n] is chosen as the state of the closed-loop system, and the pro-
cess disturbance b[n] serves as the input to the closed-loop system
and does not affect the stability of the closed-loop system. It is
straightforward to see from Eq. (12) that the sufficient condition
for the closed-loop stability is,

1� a
a
x

��� ��� < 1 ð14Þ

which is a general stability condition and applies to all types of
bounded disturbances. In practice all process disturbances are
bounded due to preventive maintenances. Therefore, the stability
condition in Eq. (14) is generally applicable. Note that because a
closed-loop system controlled by an EWMA-G controller has a non-
linear output equation (i.e., Eq. (13)), the sufficient condition given
in Eq. (14) may not be necessary. The stability condition is illus-
trated in Fig. 1a, and is consistent with that derived in Ref. [14].

For processes controlled by EWMA-I controllers, following the
similar procedure, we obtain the following state-space representa-
tion of the closed-loop system:

a½nþ 1� ¼ 1� b
b
x

� �
a½n� þxa½n� ð15Þ

y½n� ¼ � b
b

a½n� þ a½n� ð16Þ

which has linear state and output equations. Similarly, the stability
condition can be obtained from Eq. (15), which is

j1� b
b
xj < 1 ð17Þ

which is illustrated in Fig. 1b. Because of the linear output equation,
this stability condition is sufficient and necessary. The above gen-
a

α

0 2
a

α ω< ⋅ <

ω

b

β

0 2
b

β ω< ⋅ <

ω

Fig. 1. The stability region for EWMA controllers.
eral stability condition agrees with the condition derived in [5,6]
for several specific disturbances considered therein.

It is worth noting that by formulating the closed-loop system
into the state-space representations in Eqs. (12) and (13) and
(15) and (16), the stability analysis is significant simplified com-
pared with existing results [5,6,14]. In existing literature [5,6,14],
although the same stability condition was obtained for different
disturbances, the stability condition derived for one type of distur-
bances does not directly apply to others as the specific disturbance
dynamics is involved in the derivation. In addition, with the state-
space formulation, the similar closed-loop stability conditions of
the EWMA-G and EWMA-I controllers can be easily explained by
their similar linear state equations, while the different output re-
sponses of unstable systems can be explained by their different
output equations. As shown below, for bounded process distur-
bances a[n] and b[n], when the stability condition is not satisfied
the estimated states for both EWMA-I and EWMA-G become un-
bounded, i.e.,

lim
n!1
ja½n�j ! 1 for EWMA-I ð18Þ

lim
n!1
jb½n�j ! 1 for EWMA-G ð19Þ

However, the process output controlled by an EWMA-G controller
will stay bounded while the process output controlled by an
EWMA-I controller will become unbounded. This is illustrated in
Fig. 2 with a simulated linear process with T = 0, a = 0.056 for
EWMA-G, b = 0.049 for EWMA-I and IMA disturbances for the states
to be updated at each run. Notice that when the pole of an unstable
system is negative, the estimated states, i.e., a[n] for EWMA-I and
b[n] for EWMA-G, will oscillate and their limits do not exist. How-
ever, for the oscillating case, the absolute value of the estimated
states will approach positive infinity as n approaches infinity. The
difference in the process output response can be explained as the
following. Plugging the estimated states into the corresponding out-
put equations, with bounded process disturbances a[n] and b[n], for
EWMA-I

lim
n!1
jy½n�j ¼ lim

n!1
� b

b
a½n� þ a½n�

����
����!1 ð20Þ

while for EWMA-G

lim
n!1

y½n� ¼ lim
n!1

� ab½n�
b½n� þ a

� �
! a ð21Þ
4. Optimal EWMA weighting

In this section, we examine the sensitivity of EWMA controllers
by deriving their optimal weightings for different types of process
disturbances. Such analysis has been performed for EWMA-I con-
trollers for several different process disturbances (e.g., see [5,6]),
and existing results were all derived by expressing the process out-
put as a function of EWMA weighting and minimizing the output
variance or mean squared output error. In this work, we take the
characteristics of semiconductor processes into account, which en-
able us to decouple the state estimation from the feedback control
law, and focus on the state estimation performance in deriving the
optimal weightings. Without involving the feedback control law,
the analysis can be significantly simplified, especially for EWMA-G
controllers as the dead-beat control law is nonlinear with respect
to the estimated state b[n].

In this work, we consider the special case where model-plant
mismatch is absent, and the investigation of the effect of model-
plant mismatch is underway. Without model-plant mismatch,
the following two characteristics of semiconductor processes indi-
cate that the control performance of the EWMA controller solely
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Fig. 2. Different behaviors of unstable EWMA controllers.
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depends on the performance of state estimation. First, as shown in
Eq. (1), the deterministic part of the model is static, i.e., previous
inputs have no effect on current outputs. Second, dead-beat con-
trollers are applied to compute the control move in both types of
EWMA controllers. Therefore, we can derive the optimal EWMA
weighting based on the state estimation performance, instead of
the closed-loop control performance, which will simplify the anal-
ysis significantly.

Three steps are involved in deriving the optimal EWMA weigh-
tings. First, we extract the state estimation problem from the over-
all closed-loop system; next, we formulate different process
disturbances into their state-space representations, and finally
we derive the optimal weighting from the Kalman filter gain by
solving the discrete algebraic Riccati equation (DARE). In this
way, the optimality of the EWMA weighting is guaranteed by the
Kalman filter which is the optimal state estimator.

We start with decoupling the state estimation from the dead-
beat control law. Instead of expressing the process input as a func-
tion of the estimated state, i.e., Eqs. (3) and (5), we use the value of
inputs directly as they are available at the end of the run.

For EWMA-G controller, the observed process state can be de-
scribed by

b½nþ 1� ¼ f b½n�;w½n�;w½n� 1�ð Þ ð22Þ

bobs½n� ¼
y½n� � a

u½n� ð23Þ

where Eq. (22) defines the disturbance dynamics, and Eq. (23) de-
scribes how the observed value of b[n] is obtained through process
measurements. Similarly for EWMA-I controller,

a½nþ 1� ¼ g a½n�;w½n�;w½n� 1�ð Þ ð24Þ
aobs½n� ¼ y½n� � bu½n� ð25Þ

In the rest of the paper, we omit the subscript ‘‘obs” for simplicity.
For different disturbances, we formulate the state estimation

component of both EWMA controllers into their corresponding
state-space representations,

h½nþ 1� ¼ Ah½n� þw½n� ð26Þ
z½n� ¼ Ch½n� þ v ½n� ð27Þ

where h denotes the state; z[n] denotes the process disturbance to
be estimated, i.e., a[n] for EWMA-I and b[n] for EWMA-G; w[n] is
a sequence of white noise vector, and v is a sequence of white noise,
with

E w½k�wT ½j�
� �

¼ dkj � Q ð28Þ
Eðv ½k�v ½j�Þ ¼ dkj � R ð29Þ
E w½k�v½j�½ � ¼ 0 ð30Þ
where dkj denotes Kronecker delta.
Once the state-space representation is obtained, it is straight-

forward to compute the steady-state Kalman gain and derive the
optimal EWMA weightings for different disturbances. The steady-
state Kalman filter is given below:

ĥ½nþ 1� ¼ Aĥ½n� þ J z½n� � Cĥ½n�
� �

ð31Þ

J ¼ APCT CPCT þ R
� ��1

ð32Þ

P ¼ A P� PCT CPCT þ R
� ��1

CP
	 


AT þ Q ð33Þ

and the corresponding optimal estimate of the process disturbance
is

ẑ½nþ 1� ¼ Cĥ½nþ 1� ð34Þ

Solving the DARE, i.e., Eq. (33), we can compute the Kalman gain
with Eq. (32). Here we only consider the steady-state Kalman filter,
because the EWMA controllers use constant tuning parameters. Eqs.
(31)–(34) serve as the general framework for our analysis in this
section.

Note that the above state-space formulation applies to both
EWMA-G and EWMA-I controllers. For the EWMA-G controller,
we have z[n] = (y[n] � a)/u[n], while for the EWMA-I controller,
z[n] = y[n] � b u[n]. In the following analysis, we keep the above
general formulation without incorporating the detail of z[n] and
the analysis applies to both EWMA controllers. When the closed-
loop systems are stable, we expect that EWMA-I and EWMA-G
have similar sensitivity analysis results for different types of pro-
cess disturbances due to their similar linear state equations, i.e.,
Eqs. (12) and (15).

In the rest of this section, we derive optimal weightings for four
different disturbances individually, and we categorize them into
two groups: disturbances without a deterministic drift component,
which result in EWMA controllers, and disturbances with a deter-
ministic drift component, which result in double-EWMA
controllers.

4.1. Disturbances without a deterministic drift component

The WN and IMA disturbances belong to this group. In the fol-
lowing we show that the state estimators that provide optimal
estimates for these disturbances are equivalent to EWMA control-
lers with specific optimal weightings.

4.1.1. White noise (WN) disturbance
When the process disturbance is white noise, we obtain the fol-

lowing state-space model,



138 J. Wang et al. / Journal of Process Control 20 (2010) 134–142
h½nþ 1� ¼ h½n� ð35Þ
z½n� ¼ h½n� þ v½n� ð36Þ

By comparing the above equations with the general formulation
(i.e., Eqs. (26) and (27)), we have A = 1, C = 1, R = r2 and Q = 0. It
can be verified that the systems described by the above equations
is observable, so the Kalman filter can be constructed to provide
the optimal state estimation performance. Solving the DARE, we
have P1 = 0, and correspondingly the Kalman gain J1 = 0. Plugging
the Kalman gain into Eq. (31), we see that the optimal estimate of
the process disturbance z[n] can be obtained through

ĥ½nþ 1� ¼ ĥ½n� ð37Þ
ẑ½nþ 1� ¼ ĥ½nþ 1� ¼ ĥ½n� ¼ ẑ½n� ð38Þ

or equivalently it can be formulated into the EWMA estimate,

ẑ½nþ 1� ¼ ẑ½n� þ 0 � z½n� ð39Þ

Eq. (39) indicates that the optimal EWMA weighting is x = 0, which
agrees with the existing result, i.e., if the process disturbance is
white, open loop operation provides the optimal control perfor-
mance. In practice, WN disturbance is rare.

4.1.2. Integrated moving average (IMA) disturbance
The state-space representation for an IMA disturbance is given

below:

h½nþ 1� ¼ h½n� þ ð1� kÞw½n� ð40Þ
z½n� ¼ h½n� þw½n� ð41Þ

It is straightforward to verify that z[n] is an IMA sequence. In addi-
tion, Eqs. (40) and (41) are already in the Kalman filter form, with
the Kalman gain J1 = 1 � k. Therefore, the optimal estimate of
z[n + 1] obtained from the Kalman filter is

ẑ½nþ 1� ¼ ĥ½nþ 1� ¼ ĥ½n� þ ð1� kÞ z½n� � ĥ½n�
� �

¼ kẑ½n� þ ð1� kÞz½n� ð42Þ
Eq. (42) is exactly the EWMA estimate with the optimal weighting
x = 1 � k, which is the well known result for EWMA-I controller
with IMA disturbance. Eq. (42) also shows that the same optimal
weighting applies to the EWMA-G controller, independent from
the nonlinear dead-beat control law, i.e., Eq. (5). This is illustrated
using simulation examples in Section 5.

For the special case of RW disturbance where k = 0, the optimal
EWMA weighting becomes x = 1, which indicates that if the pro-
cess noise is a random walk process, using the most recently mea-
surement would provide the best performance for both EWMA-I
and EWMA-G controllers.

4.2. Disturbances with a deterministic drift component

While IMA disturbances provide good approximation for many
drifting processes, some processes show deterministic drifts, such
as the polishing rate decreases due to pad wear in CMP processes.
In this work, we consider the deterministic drift combined with
white noise and integrated moving average disturbances. We show
that the optimal estimate for the two disturbances with a deter-
ministic drift trend are equivalent to double-EWMA estimates with
corresponding optimal tuning parameters. For convenience, we
first present the formulation of a double-EWMA estimator:

n1½nþ 1� ¼ x1z½n� þ ð1�x1Þ n1½n� þ n2½n�ð Þ ð43Þ
n2½nþ 1� ¼ x2 z½n� � n1½n�ð Þ þ ð1�x2Þn2½n� ð44Þ
ẑ½nþ 1� ¼ n1½nþ 1� þ n2½nþ 1� ð45Þ

where n1 can be viewed as the estimate of the current state, and n2

is the estimate of the drifting slope, i.e., d in Eq. (10).
4.2.1. Deterministic drift with white noise (DD-WN) disturbance
The state-space representation for DD-WN is the following:

h1½nþ 1�
h2½nþ 1�

	 

¼

1 0
1 1

	 

h1½n�
h2½n�

	 

ð46Þ

z½n� ¼ 0 1½ �
h1½n�
h2½n�

	 

þ v½n� ð47Þ

First we verify that Eqs. (46) and (47) generate a DD-WN sequence.
From Eq. (46) we see that h1 is a constant, which is also the deter-
ministic drift slope, i.e., d in Eq. (10). Plugging Eq. (46) repeatedly
into (47), we have

z½nþ 1� ¼ h2½0� þ ðnþ 1Þh1½0� þ v½nþ 1�
¼ h2½0� þ ðnþ 1Þdþ v ½nþ 1� ð48Þ

which is a DD-WN sequence. Next we derive the optimal estimate
using the Kalman filter. For the DD-WN disturbance,

A ¼ 1 0
1 1

	 

;C ¼ ½0 1�;Q ¼ 02�2 and R = r2.

Solving the DARE, we obtain:

P1 ¼ 02�2 ð49Þ
J1 ¼ 02�1 ð50Þ

and the optimal estimates are

ĥ½nþ 1� ¼ Aĥ½n� ð51Þ
ẑ½nþ 1� ¼ ĥ2½nþ 1� ¼ ĥ1½n� þ ĥ2½n� ¼ d̂þ ẑ½n� ð52Þ

Eq. (51) indicates that for DD-WN disturbance, the optimal estimate
of the h[n] is obtained based on model prediction only, without any
measurement feedback, which is expected as the added noise is
white. Consequently, the optimal estimate of the process distur-
bance is based on the previous estimate only, without measurement
feedback as shown in Eq. (52). We further show that Eq. (52) is
equivalent to the double-EWMA estimation with x1 = 0 and
x2 = 0. The detailed proof of the equivalency is given in Appendix A.

4.2.2. Deterministic drift with integrated moving average (DD-IMA)
disturbance

The state-space representation of a DD-IMA disturbance is
given

h1½nþ 1�
h2½nþ 1�

	 

¼

1 0
1 1

	 

h1½n�
h2½n�

	 

þ

0
1� k

	 

w½n� ð53Þ

z½n� ¼ 0 1½ �
h1½n�
h2½n�

	 

þw½n� ð54Þ

where the state h1 represents the deterministic drift slope d, and it
is easy to verify that

z½nþ 1� ¼ z½n� þ dþw½nþ 1� � kw½n� ð55Þ

which is a DD-IMA sequence. Similar to the case of the IMA distur-
bance, Eqs. (53) and (54) are in the form of innovation representa-
tion with the Kalman gain J1 ¼ 0 ð1� kÞ½ �T . Correspondingly, the
optimal estimate of z[n + 1] is

ẑ½nþ 1� ¼ ĥ2½nþ 1� ¼ ĥ1½n� þ ĥ2½n� þ ð1� kÞ z½n� � ĥ2½n�
� �

¼ kẑ½n� þ ð1� kÞz½n� þ ĥ1½n� ð56Þ

which is equivalent to the double-EWMA estimate of the distur-
bance with x1 = 1 � k and x2 = 0. The proof of the equivalency is gi-
ven in Appendix B.

Again, for the special case of k = 0, DD-IMA disturbance reduces
to DD-RW disturbance, and its optimal estimates corresponds to
the double-EWMA filter with x1 = 1 and x2 = 0.
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It is worth noting that for disturbances with deterministic drift,
the optimal EWMA weighting that updates the drifting slope has a
value of zero, i.e., x2 = 0. This is expected because the model as-
sumes constant, or deterministic, drift slope, therefore the best
estimate of the drift slope is simply the average of the differences
between two consecutive measurements, i.e., z[n + 1] � z[n]. Also
note that all derivations in this subsection are applicable to both
double-EWMA-I and double-EWMA-G controllers, as their corre-
sponding dead-beat control laws are not involved.

5. Simulation examples

In this section, we use simulation examples to illustrate and
verify the results we obtained in the previous sections. Eqs. (6)
and (7) are used to simulate the processes, Eqs. (2) and (4) are used
to estimate process states, and Eqs. (3) and (5) are used to calculate
control moves, for processes controlled by EWMA-I and EWMA-G
controllers, respectively. Eqs. (8)–(11) are used to simulate differ-
ent types of disturbances. Model parameters are listed in Table 1,
where T represents the process target. For processes controlled
Table 1
Simulation parameters.

Parameter Value Parameter Value

a 6 b 4
r 0.5 d 0.005
k 0.7 T 10
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Fig. 4. Effects of double-EWMA weightings in rejecting DD-WN disturbance
by the EWMA-I controller, a[0] = 5;b = 4, while for processes con-
trolled by the EWMA-G controller, b[0] = 5;a = 6.

5.1. Simulation set-up

For each type of disturbance, in order to verify that the optimal
state estimation performance is equivalent to the optimal control
performance, we conduct exhaustive search and use mean squared
error (MSE) of the process output prediction as the performance in-
dex to determine the optimal EWMA weighting. For each setting of
x, 10,000 runs are simulated. To eliminate the effect of initial state,
only the last 9000 runs are used to evaluate the MSE. For distur-
bances with deterministic drift, to avoid the deterministic drift
becoming dominant in the process state as the run number be-
comes large, we reset the process state to its initial value, i.e., a
or b, every 500 runs. When the process state is reset, the estimated
state will be changed by the same amount to allow the state esti-
mator continuously converge to its steady state.

5.2. Optimal EWMA weightings

We first examine the optimal weightings for EWMA controllers
in rejecting WN, RW and IMA disturbances. We determine the opti-
mal weightings for both EWMA-I and EWMA-G controllers using
simulation. The results are shown in Fig. 3, where the optimal
weightings are indicated by stars. Fig. 3 confirms that for WN dis-
turbance, the optimal control performance is achieved at x = 0 for
both EWMA controllers, which agrees with the weighting that de-
rived from the optimal state estimation performance. Similarly for
RW and IMA, the corresponding optimal weightings are x = 1 and
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x = 1 � k, respectively, for both EWMA controllers. These results
agree with the theoretical optimal weightings obtained in Section
4 by considering state estimation performance only.

Next we examine the optimal weightings for double-EWMA
controllers in rejecting DD-WN, DD-RW and DD-IMA disturbances.
In these cases, we search for the optimal x1 and x2. The results of
double-EWMA controllers are shown in Figs. 4–6. The optimal
weightings obtained by the simulations (shown as circles in Figs.
4–6) all agree with the theoretical values derived in Section 4. In
addition, the simulation results confirm that the double-EWMA
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weightings providing the optimal state estimation performance
also provide optimal control performance.

EWMA controllers are also applied to control processes with
deterministic drifts. In this example, the drifting slope is quite
small (d/r = 0.01), and the disturbance is reset to the initial state
every 500 runs so the deterministic drift never becomes the dom-
inant part. Therefore, the optimal performance obtained from
EWMA controllers (both gain and intercept updating) is almost
the same as the optimal performance obtained from double-EWMA
controllers for the above case study. For processes with larger drift-
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ing slopes, the performance difference between EWMA and dou-
ble-EWMA controllers becomes more apparent. As EWMA control-
ler does not account for the deterministic drift explicitly, there will
be a steady-state bias in the process output when it is applied to
control a process with deterministic drift disturbance. However,
such bias can be reduced by increasing the EWMA weighting as
shown in [5], and the optimal tuning is the tread-off between
tracking deterministic drift and rejecting stochastic noise. In
Fig. 7 we compare the performance of EWMA-I and double-
EWMA-I (with x2 = 0) controllers when the process disturbance
is DD-IMA. Fig. 7a is the case with slow process drift (d/r = 0.02)
and Fig. 7b is the case with fast process drift (d/r = 0.2). It can be
seen that for process with relatively slow drift, EWMA controller
is sufficient, but for process with relatively large drift, the benefit
of double-EWMA is apparent.

It is worth noting that Figs. 3–7 indicate the performances of
EWMA and d-EWMA controllers do not degrade much in a
relatively large neighborhood of the optimal tuning, except for
DD-WN disturbance. As deterministic drift with pure white noise
disturbance is rare in practice, these simulation results suggest
that in practice the EWMA controllers can always be tuned to be
slightly conservative to handle model/plant mismatch and other
type of disturbances, with little sacrifice on the control perfor-
mance. In addition, for processes with deterministic drifts, as long
as the drift is not significant, a EWMA controller can obtain satis-
factory control performance which simplifies controller implemen-
tation and tuning. Last but not least, when a double-EWMA is
necessary to address the more apparent deterministic drift, the
weighting corresponding to the deterministic drift (i.e., x2) should
be kept small if a reliable estimate of the deterministic drift can be
obtained from historical data, as the other EWMA weighting (i.e.,
x1) can effectively address stochastic drifts.
6. Conclusions and discussion

In this work, we systematically study the stability and optimal
tuning of two types of EWMA controllers, intercept adaptation
and gain adaptation, in terms of rejecting different disturbances
that are encountered in semiconductor manufacturing industry.

By formulating the closed-loop system controlled by EWMA
controllers into the proposed state-space representations, different
types of disturbances are viewed as the driving functions to the
closed-loop system, which straightforwardly explains the observa-
tions that the stability conditions of both EWMA-G and EWMA-I
controllers are independent from the types of disturbances. In
addition, the proposed formulation reveals that the different sys-
tem responses of EWMA-I and EWMA-G controllers of the unstable
closed-loop system are due to their different output equations (lin-
ear vs. nonlinear).

For sensitivity analysis, we propose a general framework to sep-
arate the state estimation from the feedback control law, and
determine the optimal tuning based on the state estimation perfor-
mance. Such decoupling greatly simplifies the analysis. By formu-
lating different disturbances into state-space representations, we
use the Kalman filter formulation to derive the optimal state esti-
mator for different disturbances. We show that for process distur-
bances without a deterministic drift trend, an EWMA controller
with optimal weighting provides the optimal performance, while
for process disturbances with deterministic drift, a double-EWMA
controller with optimal weightings provides the optimal perfor-
mance. The derived optimal conditions are verified by simulation
examples, which also suggest that in general the EWMA controller
can be tuned to be slightly conservative without sacrificing the
control performance noticeably. In addition, a EWMA controller
can be implemented for a process with deterministic drift as long
as the drift slope is not significant.

It is worth noting that metrology delay will affect both the sta-
bility region and optimal tuning parameters for the EWMA control-
lers. The effect of metrology delay itself is an active research area
and many results are available [7,15,16]. Generally speaking, with
increasing metrology delay, the stability regions shrink for both
EWMA controllers, and the EWMA weighting should be tuned to
be less aggressive.
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Appendix A. Optimal D-EWMA weighting for DD-WN
disturbance

When x1 = x2 = 0, the double-EWMA estimate become

n1½nþ 1� ¼ n1½n� þ n2½n� ð57Þ
n2½nþ 1� ¼ n2½n� ð58Þ
ẑ½nþ 1� ¼ n1½nþ 1� þ n2½nþ 1� ð59Þ

The optimal estimate obtained from the Kalman filter, i.e., Eqs. (51)
and (52), can be expended to the following:

ĥ1½nþ 1� ¼ ĥ1½n� ð60Þ
ĥ2½nþ 1� ¼ ĥ1½n� þ ĥ2½n� ð61Þ
ẑ½nþ 1� ¼ ĥ1½n� þ ĥ2½n� ð62Þ

comparing Eqs. (57)–(59) with Eqs. (60)–(62), we see that

n2½nþ 1� ¼ ĥ1½n� ð63Þ
n1½nþ 1� ¼ ĥ2½n� ð64Þ
ẑ½nþ 1� ¼ n1½nþ 1� þ n2½nþ 1� ¼ ĥ1½n� þ ĥ2½n� ð65Þ

In other words, the optimal estimate of a DD-WN disturbance is ob-
tained from a double-EWMA estimate with x1 = x2 = 0.

Appendix B. Optimal D-EWMA weighting for DD-IMA
disturbance

When x1 = 1 � k and x2 = 0, the double-EWMA estimate
become

n1½nþ 1� ¼ ð1� kÞz½n� þ k n1½n� þ n2½n�ð Þ ¼ ð1� kÞz½n� þ kẑ½n� ð66Þ
n2½nþ 1� ¼ n2½n� ð67Þ
ẑ½nþ 1� ¼ n1½nþ 1� þ n2½nþ 1� ¼ ð1� kÞz½n� þ kẑ½n� þ n2½n� ð68Þ

Comparing the above double-EWMA estimates with the corre-
sponding estimate from the Kalman filter, i.e., Eq. (56), we observe
that,

n1½nþ 1� ¼ ĥ2½nþ 1� � ĥ1½nþ 1� ð69Þ
n2½nþ 1� ¼ ĥ1½nþ 1� ¼ d ð70Þ
ẑ½nþ 1� ¼ n1½nþ 1� þ n2½nþ 1� ¼ ĥ2½nþ 1� ð71Þ

In other words, the optimal estimate obtained from the Kalman fil-
ter is equivalent to the double-EWMA estimates with x1 = 1 � k
and x2 = 0.
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After  introducing  process  data  analytics  using  latent  variable  methods  and  machine  learning,  this  paper
briefly  review  the  essence  and  objectives  of  latent  variable  methods  to  distill  desirable  components
from  a  set  of  measured  variables.  These  latent  variable  methods  are then  extended  to  modeling  high
dimensional  time  series  data  to  extract  the most  dynamic  latent  time  series,  of  which  the current  values
are best  predicted  from  the past  values  of  the  extracted  latent  variables.  We  show  with  an  industrial
case  study  how  real  process  data  are  efficiently  and  effectively  modeled  using  these  dynamic  methods.
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The  extracted  features  reveal  hidden  information  in  the  data  that  is valuable  for  understanding  process
variability.
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. Introduction

The McKinsey Global Institute (MGI) (Manyika et al., 2011)
tates that analyzing large data sets is a key basis of competi-
iveness, productivity growth, and innovations. The availability of

assive amount of data has prompted many disciplines to reexam-
ne their traditional views, such as statistics, management science,
conometrics, and engineering. As a result, a new discipline known
s data science is forthcoming, which is concerned with deriving
nowledge and information from massive data. Several examples
how that applying effective analytics to huge amount of data can
roduce powerful results. The Google’s flu prediction is such an
xample (Ginsberg et al., 2009), which could predict the spread of
he winter flu outbreak in 2009 in the United States. The authors
ook 50 million most common searches on the web and compared
hem to the Center for Disease Control (CDC) data on the spread of
inter flu from 2003 to 2008. They then screened through 150 mil-

ion models to discover 45 features that had high correlation with
he data from CDC. In addition, the resulting model could predict
he flu spread nearly in real time, while CDC’s data took weeks to
Please cite this article in press as: Dong, Y., Qin, S.J., Dynamic latent v
and Chemical Engineering (2017), https://doi.org/10.1016/j.compchem

ompile. Although this data analytic approach is new to the area of
rocess systems engineering (PSE), the application is analogous to

nferential sensors (Tham et al., 1991; Qin and McAvoy, 1992).
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The recent success of neural networks as a promising approach
to artificial intelligence (AI) has made it a forefront for engineering
and technology development. This is, however, at least the third
time for neural networks to become an active area of AI, with the
first one in the 60s and the second one in the late 80s (Hinton,
1989). The process systems engineering (PSE) area participated
actively in the second wave of neural networks, as is well docu-
mented in the Proceedings of the Fourth Chemical Process Control
Conference with a session on Learning Systems, Adaptive and AI Con-
trol (Hopfield, 1990; Venkatasubramanian, 1991; Stephanopoulos,
1991; Morris et al., 1991). Unfortunately, the PSE field has virtually
opted out from AI and machine learning since the mid-90s. What
has crystallized in PSE is the inferential estimation of product prop-
erties and perhaps model predictive control based on multi-layer
neural networks (Tham et al., 1991; Åström and McAvoy, 1992; Qin
and Badgwell, 2003).

Nevertheless, the area of AI did not stop its progress. Being
one of the early pioneers in back-propagation learning, G.E. Hin-
ton in Hinton and Salakhutdinov (2006) developed deep learning
techniques that outperformed the alternatives in image recogni-
tion by employing many layers to form a deep network structure
(Bengio et al., 2007). The Google’s DeepMind team (Silver et al.,
2016) developed AlphaGo based on deep learning and tree search to
ariable analytics for process operations and control. Computers
eng.2017.10.029

beat the best Go players in the world. It is fair to say that, the recent
advancements of neural networks are not vastly different from
their predecessors, other than the employment of the deep network
structure and massive data. Statistical machine learning (SML) is a
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ich area that produces statistically-sound machine learning theory
nd techniques, including support vector machines (SVM) (Vapnik,
013), variable selection techniques such as Lasso and elastic net
Zou and Hastie, 2005), the kernel method by Freund and Schapire
1999). SML  establishes a theoretical basis for machine learning

ethods to control the errors in inference (National Research
ouncil, 2013). For an overview of machine learning techniques
nd their potential implication in PSE, one overview is provided in
ee et al. (2017).

Industrial process data are massive and high dimensional due
o the complexity of process operations and control. Although
hese measurements are high dimensional, the measured vari-
bles usually do not act independently due to process operation
equirements and physical constraints. These data are often highly
ollinear and correlated, making traditional regression methods
uch as least squares unreliable due to ill-conditioning. Regular-
zed least squares methods such as ridge regression can be tuned
o achieve reliable prediction with the bias and variance trade-off.
owever, these models are not easily interpretable.

To analyze these high-dimensional and correlated data effec-
ively, latent variables methods (LVM), including principal
omponent analysis (PCA), projection to latent structures (PLS),
nd canonical correlation analysis (CCA) are preferred choices. For
revity of the paper, we will not provide a detailed review of the

atent variable methods in process applications. Interested readers
hould refer to MacGregor and Kourti (1995), Wise and Gallagher
1996), and Qin (2003).

In the remainder of this paper we offer a brief introduction to
he essence and objectives of latent variable analytics. We then
resent dynamic latent variable methods for the modeling of mul-
idimensional time series data for prediction, diagnosis, and feature
nalysis. The methods are demonstrated on an industrial process
ata set to extract features that are best predicted by their past and
re easily visualized. The features are attributed to process mal-
unctions or anomalies that need to be eliminated. In concluding
he paper we adopt an open mindset towards embracing the power
f new machine learning techniques that have enjoyed tremendous
evelopment in recent years.

. Data analytics using latent variables

In this section we review the traditional latent variable meth-
ds that are effective static process data analytics (PDA). First we
ive the context in which the process and quality data are collected
nd monitored. Then we illustrate the objectives of each LVM and
omment on their advantages and shortcomings. Lastly we give
n analogy of latent-variable modeling that extracts components
ccording to the objectives to that of a distillation process that
eparates chemical components.

.1. Latent variable modeling methods

Popular latent variable methods include PCA, PLS, CCA, and their
xtensions. The common characteristics of these methods are their
bility to reduce dimensions and concentrate relevant features in a
educed-dimensional space. The objective of PCA is to represent a
et of correlated variables with a limited number of latent variables
hat are most representative of the original variables. Without any
rior requirement it is natural to require that the latent variables
apture the largest variation in the original data and, therefore, the
esiduals will be minimal. The extracted latent variables or princi-
Please cite this article in press as: Dong, Y., Qin, S.J., Dynamic latent v
and Chemical Engineering (2017), https://doi.org/10.1016/j.compchem

al components (PC) can be easily visualized in a low dimensional
pace and interpreted with process knowledge behind the observed
ata. In these models, the measured data are observations of the
nderlying latent variables that are not directly measured.
 PRESS
al Engineering xxx (2017) xxx–xxx

Let x ∈ R
M denote a sample vector of M variables. Assuming

that there are N observations for each variable, a data matrix X is
composed with N rows (observations) as follows

X = [x1 x2 · · · xN]T

It is a usual practice that variables are scaled to zero mean and
unit variance. Principal component analysis extracts a direction or
subspace of the largest variance in the M dimensional measurement
space. For an arbitrary vector direction p such that ‖p‖2 = 1, the
projection of X on to this direction is t = Xp. The PCA objective is to
maximize the variance of the projection, that is,

max  tT t = pTXTXp (1)

The solution to the above problem with ‖p ‖ 2 = 1 as a constraint can
be obtained using a Lagrange multiplier as follows

XTXp = �p (2)

which implies that p is the eigenvector corresponding to the largest
eigenvalue of XTX, which would be the sample covariance matrix
of X if divided by (N − 1). The vector p is known as the loading
vector for the first principal component. After the first component
is extracted, it is removed from the data matrix and the same eigen-
decomposition procedure is iterated, that is,

Xi+1 = Xi − tip
T
i (3)

The data matrix X = X1 and is decomposed as follows,

X =
l∑
i=1

tip
T
i + Xl+1 (4)

If the data matrix X contains highly correlated columns, it will take
fewer than M components to exhaust the variance in the residual
Xl+1. The eigenvalues correspond to the variance of the extracted
PC scores, ti, which is extracted one after another.

Partial least-squares methods find a latent structure between
two data matrices, X and Y, collected from input variables and
output variables, such that the respective score vectors

t = Xw

u = Yq

have maximized covariance. Mathematically, this is expressed as

max
t,u

J = tTu (5)

subject to the constraint that the weighting vectors w and q have
unit norm,

‖w‖2 = 1

‖q‖2 = 1

The solution to this problem can also be achieved by using Lagrange
multipliers, which lead to an eigen-problem related to the two
data matrices. Deflations and iterations are necessary to extract
all significant latent variables one after another. Due to the use of
a covariance objective function in PLS, PLS usually requires mul-
tiple latent variables even for a single output variable in Y. One
arguable advantage of requiring multiple LVs is that the PLS method
exploits variance of the input while trying to interpret the output.
This is, in fact, trying to achieve two  objectives at once, which can
make both objectives compromised. For instance, there is usually
a subspace of the PLS latent subspace that is orthogonal to the out-
ariable analytics for process operations and control. Computers
eng.2017.10.029

put. Although that subspace contains significant variability of the
input data space, it is irrelevant to the output. This is the motivation
of several recent efforts to develop orthogonalized PLS (Trygg and
Wold, 2002) and concurrent PLS methods (Qin and Zheng, 2013).

https://doi.org/10.1016/j.compchemeng.2017.10.029
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Another latent variable objective is the canonical correlation
nalysis objective developed by Hotelling (1936), which maximizes
he correlation between two sets of latent vectors t and u,

ax
t,u

J = tTu
‖t‖‖u‖ (6)

hich is actually the cosine of the angle between the latent vec-
ors. The solution to this problem is an eigen-vector solution of

XTX)
−1

XTY(YTY)
−1

YTX. An advantage of the CCA method is that
t has maximized efficiency in predicting the output Y using varia-
ions in X. To predict a single output, CCA requires only one latent
ariable to interpret all variations in the output data. However, due
o the inverses of the covariance matrices in the CCA solution, it is
ensitive to collinearity among the variables. Therefore, some form
f regularization is necessary to make the method insensitive to
ollinear data. Another issue is that CCA does not pay attention to
epresenting the input variances, other than extracting the portion
hat is useful in predicting the output. This makes CCA uninterested
n exploiting the input variance structure, especially in the input
ubspace that is orthogonal to the output. The recently developed
oncurrent CCA (Zhu et al., 2016, 2017) combines CCA and PCA to
chieve two objectives, this is, to exploit the variance structure of
he input while trying to predict the output efficiently.

The CCA objective in Eq. (6) can be equivalently achieved with
he following least squares objective,

in  J = ‖u − bt‖2 = ‖Yq − bXw‖2 (7)

his objective, of course, does not have a minimum unless the
eights are constrained in the norm. By restricting ‖Yq‖2 = 1 and

Xw ‖ 2 = 1, we have the following Theorem.

heorem 1. The least squares objective,

in  J = ‖Yq − bXw‖2

ubject to ‖Yq ‖ 2 = 1 and ‖Xw ‖ 2 = 1 is equivalent to the canonical
orrelation analysis objective in Eq. (6)

The proof of Theorem 1 is given in Appendix A. The least squares
bjective Eq. (7) gives an explicit interpretation for CCA being a

atent variable regression method.
The aforementioned methods exploit latent structured relations

mong the variables that are linear and static. They form the foun-
ation for extensions to dynamic latent variable modeling. Since all
ethods have clear objectives factor by factor, they can be inter-

reted as distilling data into one component after another, with
pecific objectives and intentions.

.2. Data distillation vs. data mining

Data mining is a popular term that represents data explorative
nalysis techniques to find patterns or features from data of social,
conomic, medical, biological, text, or engineering systems. Many
ata mining techniques are in the category of unsupervised learn-

ng and clustering, with the hope to find or extract interesting
eatures from massive data. For engineering and manufacturing
rocesses, nearly all units, equipment, and subsystems have ded-

cated purposes to perform certain functions, and data from such
rocesses are required to conform to the design and operational
pecifications. Therefore, to analyze data from these engineering
rocesses, one often has prior knowledge on what features to
xplore from the data based on engineering and operational prin-
Please cite this article in press as: Dong, Y., Qin, S.J., Dynamic latent v
and Chemical Engineering (2017), https://doi.org/10.1016/j.compchem

iples.
To better characterize methods that can extract these pre-

pecified features of interest, we use the term data distillation to
efer to the class of methods that extract certain features from
 PRESS
al Engineering xxx (2017) xxx–xxx 3

data with a clear order of relevance to the objectives. For exam-
ple, principal component analysis is a method to distill data into
components with a descending order of the variance magnitudes.
The variance of the features is clearly defined in the objective of the
PCA algorithm. Canonical correlation analysis rank-orders the com-
ponents by their canonical correlations, from high to low, which
are also clearly defined in the CCA objective. In the next section
of dynamic data distillation, the components are extracted and
rank-ordered in terms of the predictability of the current values
from the past ones, which will be explicitly defined in the objective
functions.

2.3. Process data analytics and monitoring

The process and quality data considered for process data analyt-
ics can be illustrated in Fig. 1, where the hierarchical data structure
is shown. At the bottom level are the equipment sensor measure-
ments that can be in milliseconds. At the process level are regularly
sampled process control data. The product quality measurements
come in all forms and often irregularly sampled. The top level is the
customer feedback data that can go from customer service channels
to social network complaints. The advantages of the data driven
latent structure modeling methods, such as PCA and PLS, are that
they can be used to detect abnormal changes in process operations
from real time data due to the dimension-reduction capability, ease
of visualization, and ease of interpretation. The related fault diagno-
sis methods have been intensively studied and applied successfully
in many industrial processes, e.g. chemicals, iron and steel, poly-
mers, and semiconductor manufacturing.

Process data are often categorized into process input and output
data, quality output data, and indirect (e.g., vibration signals and
images) types of data, as shown in Fig. 1. The typical procedure
of the multivariate process monitoring is given as follows and can
be found in, e.g., MacGregor et al. (1994), Qin (2012), Chiang et al.
(2000), and Cinar et al. (2007).

• Collection of normal data with good coverage of the operating
regions

• Fault data cases can be useful, but not required
• Latent variable methods (PCA, PLS, etc.) to model the data
• Fault detection indices and control limits, such as the Hotelling’s

T2 and the squared prediction error indices
• Fault diagnosis and troubleshooting, such as reconstruction-

based fault identification and contribution analysis.

3. Dynamic latent variable analytics

Since a vast amount of process data are collected in the form
of time series, with sampling intervals from seconds to millisec-
onds, dynamics or time correlations are often strong among the
data. These dynamics make static data analytics inadequate, but
they should be modeled appropriately so that they can be useful
for prediction and monitoring. Considering the large dimensional
time series data that are both cross-correlated and auto-correlated
over time, it is necessary to develop dynamic extensions of the
latent variables methods such that their current values are best pre-
dicted by their past data, using a reduced number of dynamic latent
variables. The extracted data of these dynamic latent variables are
ariable analytics for process operations and control. Computers
eng.2017.10.029

referred to as principal time series with reduced dimensions. In this
section we present the dynamic-inner PCA algorithm (Dong and
Qin, 2017), dynamic-inner PLS algorithm (Dong and Qin, 2015), and
a novel dynamic-inner CCA algorithm.

https://doi.org/10.1016/j.compchemeng.2017.10.029
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Fig. 1. Process and quality data collec

.1. PCA with dynamic latent variables

Dynamic-inner principal component analysis (DiPCA) builds
ost dynamic relations of the inner latent variables that have max-

mized auto-covariance. DiPCA extracts one latent variable after
nother that is a linear combination of the original variables with
hich the current values are in a sense best predicted from their

ast values. As a consequence, the residuals after extracting the
ost predictable latent variables from the data will be least pre-

ictable and, in the limiting case, tend to be white noise. The
ethod overcomes drawbacks of existing dynamic PCA methods

hat simply perform static PCA on augmented data with time lags
e.g., Ku et al., 1995).

The advantages of the DiPCA algorithm that extracts principal
ime series are that (i) the dynamic components can be predicted
rom their past data as known information, so the uncertainty is on
he prediction errors only; (ii) the extracted dynamic components
an highlight useful dynamic features for data interpretation and
iagnosis, which are otherwise difficult to observe from the original
ata; and (iii) the prediction errors after all dynamics are effectively
xtracted are essentially not time-correlated and can be further
odeled as static data with traditional PCA method.

In general, we wish to extract dynamics in a latent variable tk
o that the current value can be predicted from the past using the
ollowing auto-regressive (AR) model,

k = ˇ1tk−1 + · · · + ˇstk−s + rk (8)

ith the latent variable as a linear combination of the original vari-
bles tk = xT

k
w. The prediction from the dynamic inner model is

t̂k = xT
k−1wˇ1 + · · · + xT

k−swˇs

=
[
xT
k−1 · · · xT

k−s
]

(  ̌ ⊗ w)
(9)

here  ̌ = [ˇ1 ˇ2 · · · ˇs]T and w are constrained to be unit norm
ithout loss of generality. The objective of the dynamic inner PCA

lgorithm is to maximize the covariance between the extracted
ata and the prediction, that is

ax
w,ˇ

1
N

s+N∑
k=s+1

wTxk
[
xTk−1 · · · xTk−s

]
(  ̌ ⊗ w) (10)

or (N + s) observations. Denoting the data matrix as

 = [x1 x2 · · · xN+s]
T

Please cite this article in press as: Dong, Y., Qin, S.J., Dynamic latent v
and Chemical Engineering (2017), https://doi.org/10.1016/j.compchem

nd forming the following data matrices,

Xi = [xi xi+1 · · · xN+i−1]T for i = 1, 2, . . .,  s + 1

Zs = [Xs Xs−1 · · · X1]
(11)
nder a process and control hierarchy.

Dong and Qin (2017) reformulate the objective Eq. (10) of DiPCA as

max
w,ˇ

wTXTs+1Zs(  ̌ ⊗ w)

s.t. ‖w‖ = 1, ‖ˇ‖ = 1
(12)

where the scalar 1/N is omitted. The complete DiPCA algorithm
derived in Dong and Qin (2017) is summarized in Appendix B.

This DiPCA can also be viewed as a whitening filter applied to
the data. After all DiPCA components are extracted, the prediction
errors are essentially white as virtually all the dynamic relation-
ships in data are extracted. An important notion of this whitening
filter is that it has a reduced number of latent variables compared to
the number of variables in that data, and is appropriate for modeling
the common case of highly collinear data from real world problems.
This solution is different from a full dimensional vector autoregres-
sive (VAR) model that requires to invert a covariance matrix, which
can be ill-conditioned with highly correlated data. Furthermore, the
DiPCA latent variables have a clear objective and can provide useful
features for data based interpretation, visualization, and diagnosis.

3.2. PLS with dynamic latent variables

The PLS algorithm performs regression with inter-related vari-
ables by projecting the data to a lower dimensional latent space one
dimension at a time. This approach not only avoids direct inversion
of a potentially ill-conditioned matrix in ordinary least squares,
it also provides a way to trade off between the model prediction
variance and bias by selecting an appropriate number of latent
variables.

The objective of PLS only focuses on static relations in the input
and output data. To build a dynamic inner PLS model, the objective
should be changed to extracting a dynamic latent relation such as,

uk = ˇ1tk + ˇ2tk−1 + · · · + ˇstk−s+1 + rk (13)

with the latent variables related to data as follows

uk = yT
k

q

tk = xT
k

w

For each factor, the inner model prediction should be
ariable analytics for process operations and control. Computers
eng.2017.10.029

ûk = xT
k

wˇ1 + · · · + xT
k−s+1wˇs

=
[
xT
k

· · · xT
k−s+1

]
(  ̌ ⊗ w)

https://doi.org/10.1016/j.compchemeng.2017.10.029
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he dynamic inner PLS (DiPLS) algorithm from Dong and Qin (2015)
aximizes the covariance between the latent scores uk and its pre-

iction ûk as follows,

max
,w,ˇ

1
N + 1

s+N∑
k=s

qTyk
[
xTk · · · xTk−s+1

]
(  ̌ ⊗ w) (14)

his objective to solve for the model vectors q, w and  ̌ clearly con-
ains latent dynamics, while retaining outer projections of the input
nd output data to the latent variable dimension. For the special
ase of s = 1, DiPLS reduces to the static PLS.

For (N + s) observations of input and output data we form the
ollowing data matrices

Xi = [xi xi+1 · · · xN+i]
T for i = 1, 2, . . .,  s

Zs = [Xs Xs−1 · · · X1]

Ys = [ys ys+1 · · · ys+N]T

he objective of DiPLS can be represented as

max
q,w,ˇ

qTYTs Zs(  ̌ ⊗ w)

s.t. ‖w‖ = 1, ‖q‖ = 1, ‖ˇ‖ = 1
(15)

agrange multipliers are used to solve this optimization problem,
hich yields the DiPLS algorithm (Dong and Qin, 2015) as given in
ppendix C.

.3. CCA with dynamic latent variables

The DiPCA and DiPLS algorithms build inherent dynamics in the
atent variables with explicit projections from the data space to the
atent space. However, their objective functions, as illustrated in
ection 2 for the static counterparts, are not as efficient as the CCA
bjective in maximizing prediction with the least latent dimen-
ions. To obtain a principal time series that can be best predicted
rom its past values, we propose a dynamic-inner CCA (DiCCA) algo-
ithm that maximizes the correlation.

.3.1. DiCCA objective
Mathematically, we wish to ensure that the dynamic latent vari-

ble tk is best predicted by t̂k. This is done by maximizing the
orrelation between tk and t̂k, which is represented as

ax

∑s+N
k=s+1tkt̂k√∑s+N

k=s+1t
2
k

√∑s+N
k=s+1 t̂

2
k

(16)

t can be shown that when restricting
∑s+N

k=s+1t
2
k

= 1 and
s+N
k=s+1 t̂

2
k

= 1, maximizing (16) is equivalent to minimizing
s+N
k=s+1(tk − t̂k)

2
, the residual sum of squares of the prediction

odel under these constraints. Therefore, with the same prediction
odel and matrix notation as in Eqs. (9) and (11), the objective (16)

an be rewritten as

ax
wTXTs+1(Xswˇ1 + · · · + X1wˇs)

||Xs+1w||||Xswˇ1 + · · · + X1wˇs||
(17)

hich can be reformulated as the following DiCCA objective func-
ion

T T
Please cite this article in press as: Dong, Y., Qin, S.J., Dynamic latent v
and Chemical Engineering (2017), https://doi.org/10.1016/j.compchem

max
w,ˇ

J = w Xs+1Zs(  ̌ ⊗ w)

s.t. ‖Xs+1w‖ = 1, ‖Zs(  ̌ ⊗ w)‖ = 1
(18)

here Xi’s and Zs are defined in Eq. (11).
 PRESS
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3.3.2. Extracting one dynamic correlation component
To solve the optimization problem in (18), Lagrange multipliers

are applied. Define

L = wTXTs+1Zs(  ̌ ⊗ w) + 1
2
�1(1 − wTXTs+1Xs+1w)

+ 1
2
�2(1 − (  ̌ ⊗ w)TZTs Zs(  ̌ ⊗ w))

Making use of the following identities

(  ̌ ⊗ w) = (  ̌ ⊗ I)w = (I ⊗ w)ˇ

and taking derivatives of L with respective to w and  ̌ and set them
to zero respectively, we have

∂L
∂w

= XTs+1Zs
(

 ̌ ⊗ w
)

+ (  ̌ ⊗ I)TZTs Xs+1w

−�1XTs+1Xs+1w − �2(  ̌ ⊗ I)TZTs Zs
(

 ̌ ⊗ I
)

w = 0

(19)

∂L
∂ˇ

= (I ⊗ w)TZTs Xs+1w

−�2(I ⊗ w)TZTs Zs (I ⊗ w)  ̌ = 0

(20)

Pre-multiplying Eq. (20) by ˇT and using the constraint in Eq.
(18), we have J = �2. Pre-multiplying Eq. (19) by wT and refer to the
constraint, we have 2J − �1 − �2 = 0, leading to �1 = J. Therefore, we
let �1 = �2 = �. In addition, defining

Ts = Zs(I ⊗ w) = [Xsw Xs−1w · · · X1w] = [ts ts−1 · · · t1]

(21)

X̂s+1 = Zs(  ̌ ⊗ I) =
s∑
i=1

ˇiXs−i+1 (22)

we have

Zs(  ̌ ⊗ w) =
s∑
i=1

ˇiXs−i+1w = X̂s+1w = t̂s+1 (23)

where

t = Xw ∈ R
s+N

ti = Xiw ∈ R
N, for i = 1, 2, . . .,  s + 1

(24)

Eq. (20) can be rewritten as

TTs Xs+1w = �TTs Tsˇ

or,

(TTs Ts)
−1

TTs Xs+1w = �  ̌ (25)

Similarly, Eq. (19) can be reorganized as follows

XTs+1X̂s+1w + X̂
T
s+1Xs+1w = �(XTs+1Xs+1 + X̂

T
s+1X̂s+1)w

or,

(XTs+1Xs+1 + X̂
T
s+1X̂s+1)

+
(XTs+1X̂s+1 + X̂

T
s+1Xs+1)w = �w (26)

where ()+ denotes the Moore–Penrose pseudo-inverse.
ariable analytics for process operations and control. Computers
eng.2017.10.029

Eqs. (26) and (25) imply that w is the eigenvector of

(XTs+1Xs+1 + X̂
T
s+1X̂s+1)

+
(XTs+1X̂s+1 + X̂

T
s+1Xs+1) corresponding

to the largest eigenvalue. However, since X̂s+1 depends on  ̌ and
therefore  ̌ and w are coupled together, there is no analytical

https://doi.org/10.1016/j.compchemeng.2017.10.029
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olution to the optimization problem (18). Eqs. (26) and (25) can
e reorganized as follows using Eqs. (24) and (23),

�w =
(

XTs+1Xs+1 + X̂
T

s+1X̂s+1

)+ (
XTs+1 t̂s+1 + X̂

T

s+1ts+1

)

=

⎛
⎝[

Xs+1

X̂s+1

]T [
Xs+1

X̂s+1

]⎞
⎠

+[
Xs+1

X̂s+1

]T [
t̂s+1

ts+1

]

=
[

Xs+1

X̂s+1

]+ [
t̂s+1

ts+1

]
(27)

 ̌ = (TTs Ts)
−1

TTs ts+1 (28)

t is clear from Eq. (28) that  ̌ depends on w implicitly through
i. Also,  ̌ is proportional to the least squares solution of the AR

odel parameters of time series {tk}k=1,2,.... Since w is an eigen-
ector based on Eq. (26), the norm of w is scaled to one. Therefore,
e can find  ̌ to be the least squares solution from Eq. (28). The

ore DiCCA algorithm is summarized as follows.
. Initialize w with a column of the identity matrix.
. Calculate w,   ̌ by iterating the following relations until convergence.

t  = Xw and form ti from t according to Eq. (24).
Form Ts = [ts · · · t1].

 ̌ = (TTs Ts)
−1

TTs ts+1,

X̂s+1 =
∑s

i=1
ˇiXs−i+1,

t̂s+1 =
∑s

i=1
ˇits−i+1,

w =
[

Xs+1

X̂s+1

]+ [
t̂s+1

ts+1

]
and w := w/‖w‖

. Calculate J = � = t̂
T
s+1ts+1

‖t̂s+1‖‖ts+1‖ .

To extract the next dynamic latent variable, the same iteration
rocedure can be applied to the deflated matrices of Xs+1 and Zs,
hich will be discussed in the next subsection.

.3.3. Deflation
After the loading vector w and latent scores t are obtained from

he iteration procedure, X is deflated as

 := X − tpT (29)

here the loading vector p is defined as

 = XT t/tT t (30)

he deflated matrix X is then used to repeat the same iteration pro-
Please cite this article in press as: Dong, Y., Qin, S.J., Dynamic latent v
and Chemical Engineering (2017), https://doi.org/10.1016/j.compchem

edure to extract the next latent variable. The deflation procedure
eads to desirable geometric properties of DiCCA algorithm, which
s analyzed in Dong and Qin (2018). For instance, the score vectors

 from different latent variables are orthogonal.
ter structure by DiCCA.

3.4. DiCCA model relations

After obtaining the latent variable tk, an AR model can be built
to describe the dynamics in tk as

tk = ˛1tk−1 + · · · + ˛stk−s + εk (31)

The solution to estimate  ̨ is ordinary least squares, which coinci-
dentally is already solved in the iterative algorithm as ˇ. Therefore,
there is no need to fit another AR model.

Compared to other dynamic data modeling algorithms such as
DiPLS (Dong and Qin, 2015), a re-estimation of  ̌ has to be done
after the outer model projection. The extraction of the latent vari-
ables and dynamic modeling of the latent variables are achieved
simultaneously in DiCCA, because DiCCA employs consistent outer
modeling and inner modeling objectives. This is a unique property
of DiCCA and makes it a more efficient dynamic modeling algorithm
than the others.

3.4.1. DiCCA model with l components
The DiCCA algorithm extracts latent time series one by one with

descending predictability or R2 values. After l latent time series are
extracted, the next latent time series extracted will have a R2 value
close to 0, which implies that there are little or no dynamics left in
the residuals. The orthogonality of the latent scores guarantees that
the number of latent time series required to extract all dynamics
is fewer than the number of variables, which will be shown later
in the paper. Mathematically, by using t(j)

k
to denote the jth latent

score at time k, and ˇji for i = 1, 2, . . . s to denote the AR coefficients
for the jth latent score, we have the prediction model for each score
as

t̂(j)
k

= (ˇj1q−1 + ˇj2q
−2 + · · · + ˇjsq

−s)t(j)
k

= Gj(q−1)t(j)
k

(32)

where q−1 is the backward shift operator. By combining l prediction
models together, we can obtain a prediction model for the latent

score vector tk = [t(1)
k

t(2)
k

· · · t(l)
k

]
T

as

t̂k = G(q−1)tk

= diag(G1(q−1), G2(q−1), . . .,  Gl(q−1))tk
(33)

3.4.2. DiCCA model relations
DiCCA has a similar model structure as DiPLS. Assuming the

number of latent variables is chosen as l in the DiCCA model and
defining the following matrices,

T = [t(1) t(2) · · · t(l)]
ariable analytics for process operations and control. Computers
eng.2017.10.029

W = [w1 w2 · · · wl]

P = [p1 p2 · · · pl]

https://doi.org/10.1016/j.compchemeng.2017.10.029
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Fig. 3. Dynamic latent variable analytics is interpreted as a process of distilling dynamic latent components one after another, with the objective to maximize the covariance
or  correlation between the component and the prediction from its past.

 from

B

X

Fig. 4. Process schematic diagram

y iterating (29), we have the following relations

l∑
Please cite this article in press as: Dong, Y., Qin, S.J., Dynamic latent v
and Chemical Engineering (2017), https://doi.org/10.1016/j.compchem

(l+1) = X −
i=1

t(i)pTi = X − TPT
 the Eastman Chemical Company.

or equivalently

X = X(l+1) + TPT (34)
ariable analytics for process operations and control. Computers
eng.2017.10.029

Based on the orthogonal DiCCA properties in Dong and Qin (2017),

T = XR (35)

https://doi.org/10.1016/j.compchemeng.2017.10.029
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Fig. 5. Plots of five dynamic principal components using DiPCA.
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Fig. 6. Auto-correlation and cro

here

 = W(PTW)
−1

(36)

herefore, for a given vector xk, the score vector can be calculated
s

k = RTxk
Please cite this article in press as: Dong, Y., Qin, S.J., Dynamic latent v
and Chemical Engineering (2017), https://doi.org/10.1016/j.compchem

nd xk can be decomposed as

k = Ptk + x̃k (37)
ocorrelation for five DiPCA PCs.

The decomposition in (37) gives the partition of the space formed
by current data. Furthermore, to explore the relations between the
past data and current data, relation (33) can be utilized to derive
the one step prediction error,

ek = xk − Pt̂k = xk − PG(q−1)tk (38)
ariable analytics for process operations and control. Computers
eng.2017.10.029

When the number of dynamic latent variables l is selected to extract
all dynamics in the data, there will be little or no dynamics left in
ek. Further PCA modeling of ek will be appropriate if it is desired to
extract the covariance structure in the prediction error.

https://doi.org/10.1016/j.compchemeng.2017.10.029
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In addition, since there is little or no dynamics left in ek after
he removal of the prediction error, DiCCA can be interpreted as a
ynamic whitening filter which removes all the dynamics in the
ata. Mathematically, based on (33) and (38), the dynamic whiten-

ng filter can be written as

k = (I − PG(q−1)RT )xk (39)

he block diagram of DiCCA dynamic whitening filter is shown in
ig. 2.

.5. Interpretation as dynamic data distillation

With the objective of maximizing covariance or correlation
etween the latent time series and its prediction from the past,
iPCA and DiCCA performs dynamic data distillation from all mea-

ured data such that the extracted dynamic components co-vary or
orrelate the most with their past. These most predictable dynamic
omponents are referred to as principal time series that are latent
n the original data. The prediction errors of the data after the
rst predicted component is extracted are then used to extract

he second most predictable latent component, until all significant
ynamic components are extracted. This procedure is analogous to

 multi-stage binary distillation process, with each stage separat-
ng the most dynamic component from others, and the leftovers
fter all components are extracted are essentially un-correlated in
ime, resembling white noise. Fig. 3 illustrates how these dynamic
atent variable analytics distill dynamic latent components one
fter another, with the objective to maximize the covariance or
orrelation between the component and its prediction from the
ast data. High dimensional time series data are considered as a
ixture of a number of dynamic latent components, which are not
easured directly, and static errors. DiPCA and DiCCA distill the
ulti-dimensional data into dynamic components in descending

rder of covariance or correlation, respectively.

. Dynamic feature extraction for industrial process data
Please cite this article in press as: Dong, Y., Qin, S.J., Dynamic latent v
and Chemical Engineering (2017), https://doi.org/10.1016/j.compchem

The case study is on a set of data from the Eastman Chemical
ompany, with Fig. 4 showing the process schematic diagram. The
astman Chemical Company had identified a need to diagnose a

Fig. 8. Plots of five dynamic princip
Fig. 7. The first two DiPCA PCs and the predictions from their past scores using
DiPCA. The circular shape shows covarying oscillations at the same frequency.

common oscillation of about two hours (about 340 samples/cycle).
Early work (Thornhill et al., 2003; Xia et al., 2005) has focused on
the diagnosis of this oscillation. Using the Granger causality analy-
sis, five process variables are identified to have strong oscillations
(Yuan and Qin, 2014). These five variables with strong oscillations
are selected in this work to illustrate how the dynamic data and
features can be modeled using DiPCA and DiCCA.

Using DiPCA on the five process variables leads to five dynamic
PCs as shown in Fig. 5. The auto-regression order of the dynamics is
chosen as 21, which makes the prediction errors of the dynamic
principal components essentially white. Fig. 6 depicts the auto-
correlation and cross-autocorrelation for the five dynamic PCs. It is
clear that the first two  PCs are very oscillatory, while the third one
is still somewhat oscillatory and co-varies with the first two PCs.
To visualize how the DiPCA model predicts the PCs, the first two
DiPCA PCs and the predictions from their past scores are shown in
Fig. 7. The circular shape shows the co-varying oscillations at the
ariable analytics for process operations and control. Computers
eng.2017.10.029

same frequency.
Next, DiCCA is used to model the five process variables, which

leads to five dynamic PCs as shown in Fig. 8. The order of the dynam-

al components using DiCCA.

https://doi.org/10.1016/j.compchemeng.2017.10.029
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Fig. 9. Auto-correlation and cross-autocorrelation for five DiCC
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ig. 10. The first two DiCCA PCs and the predictions from their past scores. The big
ircular shape shows the co-varying oscillations at the same frequency. In addition,
here is a clear smaller oscillation with higher frequency due to the second PC.

cs is chosen as 22, which is chosen such that the errors predicted
ith the dynamic PCs are essentially white. Fig. 9 depicts the auto-

orrelation and cross-autocorrelation for the five DiCCA PCs. It is
lear that the first two PCs are very oscillatory, while the third one
s little correlated to the first two PCs.

To visualize how the DiCCA model predicts the PCs, the first two
iCCA PCs and the predictions from their past scores are shown in
ig. 10. While the big circular shape shows co-varying oscillations at
he same frequency, there is a clear smaller oscillation with higher
requency that is best captured by the second PC. This feature is
ot observed at all using DiPCA analysis. The DiCCA scatterplot has
lear but faster oscillations on top of the large circular shape, indi-
Please cite this article in press as: Dong, Y., Qin, S.J., Dynamic latent v
and Chemical Engineering (2017), https://doi.org/10.1016/j.compchem

ating that there is another high frequency oscillation component.
his frequency is likely caused by another control loop with valve
tiction. Dong and Qin (2018) apply causality analysis and contri-
ution analysis to pinpoint to the causes of these oscillations. The
A PCs. The third PC is little correlated to the first two PCs.

fact that DiCCA detects a new feature makes it better than DiPCA in
extracting dynamic features.

5. Conclusions

Process data analytics have been applied in chemical process
operations for decades. Although latent variable methods have
been successfully applied to static data analysis, the methods pre-
sented in this paper appear to be the first class of methods that
maximizing the dynamic content of the projected latent scores.
The principal dynamic latent variables are most predictable com-
ponents in the whole data space, and therefore have the least
prediction errors. In the industrial data case from Tennessee East-
man  studied in this paper, the sustained dynamic oscillatory
content is undesirable in process operations. Further diagnostic
analysis reveals what they are and where they come from Dong
and Qin (2018). By fixing the causes the excessive oscillations can
be eliminated.

With the advancement of analytics in other sectors of industries
and business operations, there appears to be much more research
opportunities in the future. While physical and chemical sciences
develop principles which enable mechanistic models to be estab-
lished for process understanding, data analytics provide real and
up-to-date information that reflects changes and uncertainty in the
operation, and provide a reliable source of information to detect
emerging situations.

Prediction, visualization, and interpretation of massive data
with latent variables are powerful to deal with high dimensional
and highly correlated data. The benefit of data analytics is to turn
data into knowledge and support effective operations and decision-
making, which help push beyond the traditional boundaries.
ariable analytics for process operations and control. Computers
eng.2017.10.029
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ppendix A. Proof of Theorem 1

The least squares solution for b to the objective
in‖ Yq − bXw ‖ 2 is

 = (wTXTXw)
−1

wTXTYq

pplying the constraint ‖Xw ‖ 2 = wTXTXw = 1, the solution can be
implified as b = wTXTYq.  Replacing b in the least squares objective
nd utilizing ‖Yq ‖ 2 = 1 and ‖Xw ‖ 2 = 1, we have

J = (Yq − bXw)T (Yq − bXw)

=
∥∥Yq

∥∥2 − bwTXTYq − bqTYTXw + b2
∥∥Xw

∥∥2

= 1 − (wTXTYq)
2 − (wTXTYq)

2 + (wTXTYq)
2

= 1 − (wTXTYq)
2

herefore, minimizing ‖Yq − bXw ‖ 2 is equivalent to maximiz-
ng wTXTYq under the constraints ‖Yq ‖ 2 = 1, ‖ Xw ‖ 2 = 1, which is
quivalent to maximizing

 = qTYTXw
‖Yq‖‖Xw‖

ppendix B. DiPCA algorithm

. Scale X to zero-mean and unit-variance. Initialize w to a random
unit vector.

. Extracting latent variables. Iterate the following relations until
convergence.

t = Xw and form ti from t similar to the

formation of Xi for

i  = 1, 2, . . .,  s + 1

 ̌ = [t1 t2 · · · ts]
T ts+1

w =
s∑
i=1

ˇi(X
T
s+1ti + XTi ts+1)

w := w/‖w‖
 ̌ := ˇ/‖ˇ‖

. Deflation. Deflate X as

X := X − tpT ; p = XT t/tT t

. Return to Step 2 to extract the next latent variable, until l latent
variables are extracted.

. Dynamic inner modeling. Build a VAR model for latent score.
Then, Ts+1 is predicted as

T̂s+1 = T̄s�̂
Please cite this article in press as: Dong, Y., Qin, S.J., Dynamic latent v
and Chemical Engineering (2017), https://doi.org/10.1016/j.compchem

. Static modeling of prediction errors. Perform traditional PCA on
the prediction error matrix Es+1

Es+1 = Xs+1 − T̂s+1PT = TrPTr + Er
 PRESS
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Appendix C. DiPLS algorithm

1. Scale X and Y to zero-mean and unit-variance. Initialize  ̌ with
[1, 0, . . .,  0]′, and us as some column of Ys.

2. Outer modeling. Iterate the following relations until conver-
gence achieved.

w =
s∑
i=1

ˇiX
T
s+1−ius; w := w/‖w‖

t = Xw and form ti from t for i = 1, . . .,  s

q = YTs

s∑
i=1

ˇits+1−i; q := q/‖q‖

us = Ysq

ˇ = [ˇ1 ˇ2 · · · ˇs] = [ts ts−1 · · · t1]Tus;  ̌ := ˇ/‖ˇ‖

3. Inner modeling. Build a linear model between ts, ts−1, . . .,  t0 and
us by least squares.

us = ˛1ts + ˛2ts−1 + · · · + ˛st1 + rs

and calculate the predicted ûs as follows

ûs = ˛1ts + ˛2ts−1 + · · · + ˛st1

4. Deflation. Deflate X and Y as

X := X − tpT ; p = XT t/tT t

Ys := Ys − ûsqT

5. Return to Step 2 until enough latent variables are extracted.
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a  b  s  t  r  a  c  t

Principal  component  analysis  (PCA)  has  been  widely  applied  for  data  modeling  and  process  monitoring.
However,  it  is not  appropriate  to directly  apply  PCA  to  data  from  a dynamic  process,  since  PCA  focuses
on  variance  maximization  only  and  pays  no  attention  to  whether  the  components  contain  dynamics
or  not.  In  this  paper,  a novel  dynamic  PCA  (DiPCA)  algorithm  is  proposed  to  extract  explicitly  a  set
of  dynamic  latent  variables  with  which  to  capture  the  most  dynamic  variations  in the  data.  After  the
dynamic  variations  are  extracted,  the  residuals  are  essentially  uncorrelated  in  time  and  static  PCA can
be applied.  The  new  models  generate  a subspace  of  principal  time  series  that  are  most  predictable  from
ynamic data modeling
rocess monitoring
ault detection

their  past  data. Geometric  properties  are  explored  to give  insight  into  the new  dynamic  model  structure.
For  the purpose  of  process  monitoring,  fault  detection  indices  based  on DiPCA  are  developed  based  on
the  proposed  model.  Case  studies  on simulation  data,  data  from  an  industrial  boiler  process,  and  the
Tennessee  Eastman  process  are  presented  to illustrate  the  effectiveness  of the  proposed  dynamic  models
and fault  detection  methods.

©  2017  Elsevier  Ltd. All  rights  reserved.
. Introduction

Industrial process data are becoming massive and increasingly
aluable assets for decision making in process operations, pro-
ess control and monitoring. Since process measurements are often
ighly correlated, latent variable methods, such as principal com-
onent analysis (PCA) and partial least squares (PLS), are effective
nalytic tools for data modeling and process monitoring [1–5]. In
CA, the objective is to extract latent variables from the data such
hat the variance of the extracted latent variables is maximized. By
pplying PCA, the measurement space can be decomposed into a
rincipal subspace with maximized variability and a residual sub-
pace. Fault detection statistics are developed for each subspace for
rocess monitoring.

One major shortcoming for PCA is the lack of focus on time
ependence, i.e., the structure of autocorrelation in the data is

ot exploited. However, measurements from industrial processes
re often both cross-correlated and autocorrelated. Several prob-
ems can arise when applying static PCA to dynamic data directly.

∗ Corresponding author at: Ming Hsieh Department of Electrical Engineering,
niversity of Southern California, Los Angeles, CA 90089, USA.

E-mail address: sqin@usc.edu (S.J. Qin).

ttps://doi.org/10.1016/j.jprocont.2017.05.002
959-1524/© 2017 Elsevier Ltd. All rights reserved.
Since static PCA is unable to extract dynamic relationships from
the data, autocorrelation and cross-correlation are mixed together,
which makes it difficult for traditional PCA to reveal what type
of relations among the measured variables. Furthermore, auto-
correlations invalidate the statistical properties for fault detection
methods developed for traditional PCA. Directly applying tradi-
tional fault detection methods may  lead to misleading results.

Several methods have been developed to deal with measure-
ments from dynamic processes. Negiz et al. [6] proposed a time
series based approach, where a time series model is identified first.
Then, the time series model is used to make predictions, and the
prediction errors are used for process monitoring. However, this
approach considers univariate time series models for simplicity.
Even though it can be extended to multivariate time series, it does
not retain the dimension reduction feature that is available in PCA
to deal with cross-correlations.

A straightforward dynamic PCA method was proposed by Ku
et al., which augments the data matrix with a number of lagged
measurements [7]. Static PCA is performed on the augmented data
matrix to extract latent variables. However, this method has sev-

eral disadvantages. First, both the dimension of the loading vectors
and the number of parameters increase dramatically as the number
of lags increases. Second, no explicit representation can be derived
between the latent variable and the original measurement vari-

https://doi.org/10.1016/j.jprocont.2017.05.002
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2017.05.002&domain=pdf
mailto:sqin@usc.edu
https://doi.org/10.1016/j.jprocont.2017.05.002
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bles. Third, the extracted latent variables have no attention on the
ynamic content of the data; only variance is focused on, which
akes it difficult to interpret the model and explore the underly-

ng correlation structure. Alternative dynamic PCA algorithms were
roposed to deal with various cases, such as nonlinearity and batch
rocesses [8–10]. However, augmented data matrices are used in
ll of these algorithms. Therefore, they share the same limitations
s Ku et al. [7].

Recently, Li et al. proposed a dynamic latent variable (DLV)
odeling algorithm [11]. It first uses an auto-regressive PCA

lgorithm to extract the latent variables so that the maximum auto-
ovariance is achieved. Then, a vector autoregressive (VAR) model,
hich is referred as an inner model,  is built for the latent variables

o represent the dynamic relationships. This algorithm provides an
xplicit representation of the inner dynamic relationships, and a
ompact model to represent the data structure. However, when
xtracting the latent variables, only the auto-covariance at one
ime lag is maximized in this method; the auto-covariance at other
ime lags are ignored. This makes the extraction of latent variables
nconsistent with the dynamic modeling of latent variables.

A structured dynamic PCA algorithm was proposed by Li et al. as
n improvement, where the objective function is to maximize the
ariance of a weighted sum of lagged latent variables [12]. Then

 VAR model is built to capture the dynamic relationships of the
atent variables. However, the VAR model of the inner dynamic
elationships is not consistent with the maximum variance in the
bjective function. Collinear static relationships can dominate a
atent variable that satisfies the maximum-variance, which fails to
xtract dynamic relationships in the latent variables.

Inspired by dynamic-inner partial least squares (DiPLS) [13]
eveloped recently, a dynamic-inner principal component anal-
sis (DiPCA) is proposed in this paper. While DiPLS is suitable
or dynamic data modeling between two sets of variables, DiPCA
xtracts one or more latent variables that are linear combinations
f one set of variables and have maximized auto-covariance. In the
omplement, the residuals after extracting the most predictable
atent variables from the data will, in the limiting case, tend to
e white noise. In this sense, the DiPCA algorithm extracts a set
f principal time series from a multi-dimensional time series. The
esidual with little or no auto-covariance can then be treated as
tatic data with traditional PCA methods for additional monitoring
nd analysis.

Although there are many versions of dynamic PCA algorithms
n the literature, and some of them are used for process monitor-
ng, most of them follow the approach by extending the data with
ime-lagged variables. These approaches immediately increase the

imensions of the data matrix, making them hardly a dimen-
ion reduction approach. Further, the static PCA objective in these
ethods does not even guarantee that the extracted principal com-

onents are dynamic. We  listed other prior work in Table 1 for

able 1
omparisons of DiPCA with other methods.

Method Focusing on
dynamics

Explicit dynamic
components

DiPCA (this work) Yes Yes 

PCA  with augmented
lagged data [7]

No No 

DLV  [11] No Yes 

Structured DLV [12] No Yes 
ss Control 67 (2018) 1–11

comparison, which were developed in our group as precursors to
this current work. The interpretability of data analytic methods is
always a desirable feature to possess. In this regard none of the
existing methods can match the current work.

The remainder of this paper is organized as follows. Section 2
reviews the traditional PCA algorithm and gives the objective func-
tion of the DiPCA algorithm. Section 3 presents the proposed DiPCA
algorithm. Geometric properties and relations of DiPCA are dis-
cussed in Section 4. Section 5 derives fault detection indices and
proposes process monitoring schemes based on DiPCA model. Case
studies on simulation data, boiler process data, and Tennessee East-
man  Process data are presented to show the effectiveness of the
proposed algorithm in Section 6. The final section gives conclusions.

2. PCA and DiPCA objective functions

Let x ∈ R
m denote a sample vector of m variables. Assuming

that there are n samples for each variable, a data matrix X ∈ R
n×m,

with each row representing a sample, can be used to build a PCA
model. The objective of PCA is to extract a direction p of the largest
variance in the m dimensional measurement space, which can be
expressed as

max
p

pTXTXp

s.t. ‖p‖ = 1
(1)

The solution to this optimization problem is obtained as follows
using a Lagrange multiplier,

XTXp = �p (2)

where � = pTXTXp matches the objective in (1). This implies that p
is the eigenvector of XTX corresponding to the largest eigenvalue.
After the loading vector p is obtained, the latent score vector t can
be calculated as t = Xp.  To extract the next principal component, the
same optimization problem can be solved on the deflated matrix:

X := X − tpT (3)

It is clear from the objective of PCA that only static cross-
correlations among the variables are extracted by PCA. If the data
are collected from a dynamic process, traditional PCA will leave the
dynamics unmodeled, making the principal components and even
residuals having unmodeled dynamics. Having dynamic content in
a component means that its future can be predictable from its past
to a certain extent. The uncertainty will be on the prediction error
only, not the entire component. Therefore, ignoring dynamic infor-

mation in the analysis makes the model not representative of the
data when they are used for further analysis and process moni-
toring. The consequence is that, while the false alarm rate can be
controlled with a larger-than-necessary control limit, it leads to an

Interpretability Dimension reduction

Easy Yes, up to the dimension of the
variable space

Hardly any. There is no
guarantee that the extracted
principal components are even
dynamic

No. The number of principal
components can be greater
than the dimension of the
variable space

Some, but static correlation can
dominate a dynamic principal
component

Yes, up to the dimension of the
variable space

Some, but static correlation can
dominate a dynamic principal
component

Yes, up to the dimension of the
variable space
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verly large missed alarm rate. This restricts the applicability of
CA and makes it unsuitable for dynamic data modeling.

The objective of this paper is to develop a dynamic PCA objective
hat is consistent with its inner dynamic VAR relation, which is most
redictable by its past. While this seems to be a natural and useful
omponent to derive from the data, no prior work has been found in
he literature. This approach is referred to as dynamic inner PCA in
his paper. In general, the dynamics in latent variables that predict
he current from the past can be expressed as

k = ˇ1tk−1 + · · · + ˇstk−s + rk (4)

ith the latent variable as a linear combination of the original vari-
bles

k = xTkw (5)

here
∥∥ˇ

∥∥ = 1, ‖w‖ = 1, xk is the sample vector at time k, and w
s the weight vector. If the number of time lags, s, is chosen long
nough such that the residual rk is essentially white noise for each
atent variable, the prediction from the dynamic inner model is

t̂k = xT
k−1wˇ1 + · · · + xT

k−swˇs

= [xT
k−1· · ·xT

k−s](  ̌ ⊗ w)
(6)

here  ̌ = [ˇ1 ˇ2 · · · ˇs]T and  ̌ ⊗ w is the Kronecker product. Based
n the above dynamic inner model, the objective function for
xtracting the latent variables should maximize the covariance
etween tk and t̂k. Let xk be the sample vector at time k, k = 1, 2,

 . .,  N + s. Therefore, the objective is to maximize

1
N

s+N∑
k=s+1

wTxk[x
T
k−1· · ·xTk−s](  ̌ ⊗ w) (7)

his objective leads to the dynamic inner PCA algorithm to be
erived in the next section.

. Dynamic inner PCA Algorithm

.1. Extracting One Dynamic Component

Denote the data matrix as

 = [x1 x2 · · · xN+s]
T

nd form the following data matrices from X,

Xi = [xi xi+1 · · · xN+i−1]T for i = 1, 2, · · ·, s + 1

Zs = [X1 X2 · · · Xs]

he objective in (7) can be rewritten as

max
w,ˇ

wTXTs+1Zs(  ̌ ⊗ w)

s.t. ‖w‖ = 1,
∥∥ˇ

∥∥ = 1
(8)

here s is the dynamic order of the model. The dimension of w
s the same as the number of variables, which does not increase

ith the dynamic order of the model. After the weighting vector
 is extracted, the latent score tk is calculated as tk = xT

k
w. It is

lear that the most co-varying dynamic relationship is extracted
etween tk and tk−1, . . .,  tk−s by the objective function. Therefore,
n explicit dynamic model is built between the latent variables.

ompared to other dynamic PCA algorithms, the objective function
f DiPCA leads to the extraction of only dynamic latent relations.
he residuals after all dynamic components are extracted contain
ittle dynamic information and, therefore, can be analyzed using
ss Control 67 (2018) 1–11 3

static PCA further if so desired. Lagrange multipliers are used to
solve the optimization in (8). Define

J = wTXTs+1Zs(  ̌ ⊗ w) + 1
2
�ˇ(1 − ˇTˇ) + �w(1 − wTw) (9)

where

(  ̌ ⊗ w) = (  ̌ ⊗ I)w = (I ⊗ w)ˇ

Taking derivatives with respective to w and  ̌ and set them to zero,
we have

∂J
∂w

= XTs+1Zs(  ̌ ⊗ I)w + (  ̌ ⊗ I)TZTs Xs+1w

−2�ww = 0

(10)

∂J
∂ˇ

= (I ⊗ w)TZTs Xs+1w − �ˇ  ̌ = 0 (11)

Define Gˇ = XTs+1Zs(  ̌ ⊗ I), the above equations can be simplified as

∂J
∂w

= Gˇw + GTˇw − 2�ww = 0 (12)

∂J
∂ˇ

= (I ⊗ w)TZTs Xs+1w − �ˇ  ̌ = 0 (13)

Pre-multiplying wT to (12) and ˇT to (13) and using the fact that
these vectors are unit norm, we  have

2�w = wT (Gˇ + GTˇ)w = 2J

�ˇ = ˇT (I ⊗ w)TZTs Xs+1w = J
(14)

The above results imply that �w and �ˇ are both equal to the maxi-
mum  value of J, and w is the eigenvector of Gˇ + GTˇ corresponding
to the largest eigenvalue. However, since  ̌ and w are coupled
together, there is no analytical solution to the optimization problem
(8). Defining the latent scores t as follows,

t = Xw

and denoting

ti = Xiw, for i = 1, 2, . . .,  s + 1

as scores for the sub-matrices, (13) can be rewritten as follows,

�ˇ  ̌ = [t1 t2 · · · ts]
T ts+1 (15)

which indicated that  ̌ depends on w implicitly through its depen-
dence on ti, for i = 1, 2, . . .,  s + 1, entirely. Furthermore, (12) can be
re-organized as follows,

2�ww =
s∑
i=1

ˇi(X
T
s+1ti + XTi ts+1) (16)

Therefore, the following iterative method is proposed to solve the
problem.

(1) Initialize w with unit vector.
(2) Calculate w,  ̌ by iterating the following relations until conver-

gence.

t = Xw and form ti from t for i = 1, 2, . . .,  s + 1

 ̌ = [t1 t2 · · · ts]
T ts+1

w =
s∑
ˇ (XT t + XT t )
i=1

i s+1 i i s+1

w := w/ ‖w‖
ˇ := ˇ/

∥∥ˇ
∥∥
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Calculate J =
∑s

i=1ˇit
T
i ts+1.

X
s+1
Z
s

.2. Deflation

After the weight vector w and latent scores t are obtained from
he above algorithm, X is deflated as

 := X − tpT (17)

here the loading vector p is defined as

 = XT t/tT t (18)

orm Xi from X for i = 1, 2, . . .,  s + 1 and repeat the same algorithm
o extract the next latent variable.

emark 1. As in DiPLS [13], an alternative approach could be
onceived, where the predicted t̂s+1 is used to deflate Xs+1 as

Xs+1 := Xs+1 − t̂s+1qT

t̂s+1 = ˛1t1 + ˛2t2 + · · · + ˛sts

q = XTs+1 t̂s+1/t̂
T
s+1 t̂s+1

(19)

hile the deflation of other matrices in Zs remains the same as
17). However, this approach cannot be applied to DiPCA because
e need to deflate both Zs and Xs+1 the same way to ensure that the
ext dynamic inner model is still an auto-regressive model. There-

ore, it is imperative to deflate the way as shown in (17) to ensure
hat the subsequent latent variables are derived from consistently
eflated residual matrices. The approach depicted in (19) no longer
xtracts the auto-regressive time series beyond the first latent time
eries.

.3. DiPCA Model with l Components

The DiPCA main algorithm extracts the latent time series as the
ynamic latent scores one by on in descending order of predicted
ovariation. These scores are orthogonal as will be shown later in
his paper, which are very convenient for interpretation, but there
an be some degree of correlation among them at different time
ags. There is no reason to believe that these interactions are strong
iven that they are orthogonal without time lags, but one has the
ption to predict all latent scores simultaneously to account for
hese minor interactions. Let t̆j, j = 1, 2, . . .,  l denote the jth latent

omponent score vector and let T = [t̆1 t̆2· · ·t̆l]
T
. Form Ti from T for

 = 1, 2, . . .,  s + 1 in the same way as forming Xi from X. A VAR model
an be built to represent the dynamic relations between Ts+1 and
1, T2, · · ·,  Ts as follows.

Ts+1 = T1�s + T2�s−1 + · · · + Ts�1 + V

= T̄s� + V
(20)

here T̄s = [T1 T2 · · · Ts] and � = [�s�s−1 · · · �1]. The least
quares estimate for � is

ˆ
 = (T̄

T
T̄ )

−1
T̄
T

T (21)
s s s s+1

nce �̂ is obtained, Ts+1 can be predicted as

ˆ s+1 = T̄s�̂ (22)
ss Control 67 (2018) 1–11

which can further be used to calculate the prediction of Xs+1 as

X̂s+1 = T̂s+1PT (23)

where P = [p1p2 · · · pl] is the loading matrix with each pi defined in
(18).

With the prediction from past data, the prediction errors (PE)
from DiPCA can be calculated as follows.

Es+1 = Xs+1 − T̂s+1PT (24)

After the principal dynamic components are extracted, traditional
PCA can be performed on the prediction error as follows,

Es+1 = TrPTr + Er (25)

Therefore, Xs+1 is decomposed as

Xs+1 = T̂s+1PT + TrPTr + Er (26)

where the first term on the right hand side of (26) is a predic-
tion using past data, while the other terms are projections of data
involving the current data. The procedure of DiPCA modeling can
be summarized in Table 2 as the DiPCA Algorithm.

Remark 2. It is possible that the iteration converges to a local
maximum. This will lead to a smaller value of J. To avoid local max-
ima, initialize w randomly and perform multiple trials. The optimal
w and  ̌ correspond to the largest value of J.

Remark 3. The inner model dynamics is parameterized with an
autoregressive model. It is known in system identification that AR
models can approximate more general dynamics such as autore-
gressive moving average (ARMA) dynamics. If it is desirable to
parametrize the inner dynamics as an ARMA model, a subsequent
model-reduction can be implemented to obtain an ARMA model
or state space model [14]. If there exists integrating dynamics, it
is likely to be extracted among the first few dynamic components.
One has the option to model the integrating dynamics a priori or
do it as part of DiPCA.

3.4. Determination of model parameters

In DiPCA modeling, three parameters need to be determined:
dynamic order s, the number of dynamic latent variables l, and
the number of static latent variables. First, assuming s is deter-
mined, then l can be chosen such that 95 percent of auto-covariance
are captured by the first l dynamic latent variables. Therefore, l is
viewed as a function of s, which can be written as l = l(s). To deter-
mine the optimal s, a DiPCA model is built based on the training the
data first. Then applying the model to the validation dataset allows
us to obtain the prediction error matrix EVs+1 of the validation data
matrix. According to the previous analysis, little dynamic relation-
ships are left in EVs+1. Therefore, the sample crosscorrelation of any
two variables in EVs+1 should be close to 0, except when lag = 0. The
calculation of the corresponding confidence bounds can be found
in [15]. When all the pairs of variables are considered, the total vio-
lations of the confidence bounds can be obtained for any (s, l(s)).
The parameter (s, l(s)) corresponding to the minimum violations
is determined to be optimal. To determine the number of static
components, cumulative percentage of variance (CPV) is applied
[16].

4. DiPCA geometric properties and relations

4.1. DiPCA geometric properties
The DiPCA algorithm has a different structure from static PCA
and other dynamic PCA algorithms. Therefore, it is important to
understand the geometric properties of the DiPCA projections and
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Table  2
DiPCA Algorithm.

1. Scale X to zero-mean and unit-variance. Initialize w to a random unit vector.
2.  Extracting latent variables. Iterate the following relations until convergence.

t  = Xw and form ti from t similar to the formation of Xi for

i  = 1, 2, . . .,  s + 1

 ̌ = [t1 t2 · · · ts]
T ts+1

w =
s∑
i=1

ˇi(X
T
s+1ti + XTi ts+1)

w := w/ ‖w‖
 ̌ := ˇ/

∥∥ˇ
∥∥

3. Deflation. Deflate X as
X : = X − tpT; p = XTt/tTt

4.  Return to Step 2 to extract the next latent variable, until l latent variables are
extracted.

5.  Dynamic inner modeling. Build a VAR model for latent scores based on (21)
and (22). Then, Ts+1 is predicted as
T̂s+1 = T̄s�̂

6.  Static modeling of prediction errors. Perform traditional PCA on the prediction

h
p
t
f

X

F
f

L
t

•
•
•
•
•

v

W
m
l

T

w

w
c
i

•
•
•

w
r
l
i

error matrix Es+1

Es+1 = Xs+1 − T̂s+1PT = TrPTr + Er

ow the data space is partitioned. To explore the DiPCA geometric
roperties with j latent variables being extracted, we  use a subscript
o denote the succession from one latent variable to the next as
ollows.

j+1 = Xj − t̆jp
T
j with pj = XTj t̆j/t̆

T
j t̆j (27)

rom (27) and the relations in DiPCA algorithm, we  can obtain the
ollowing lemma.

emma  1. Suppose i < j. We  have the following relationships among
he residual matrices and loading vectors.

Xj = HXi+1
Xj = Xi+1G
Xjwi = 0i < j
XTj t̆i = 0 i < j

wT
i

pi = 1

where H and G are some matrices formed by the DiPCA latent
ectors and loadings and are given in the Appendix A.

ith the above Lemma, the following Theorem is given to sum-
arize the orthogonal properties of the DiPCA latent scores and

oadings.

heorem 1. In the DiPCA algorithm, denoting X̄s =
∑s

d=1ˇdXd, then

 ∝ [XTs+1X̄s + X̄
T
s Xs+1]w

hich means that w is the eigenvector of the above symmetric matrix
orresponding to the largest eigenvalue. In addition, for Components
, j in the model, the following relations hold.

wT
i

wj = 0 ∀i /= j

t̆
T
i t̆j = 0 ∀i /= j

wT
i

pj = 0 ∀i < j
here t̆i and t̆j denote the score vectors of Components i and j,
espectively, to be different from the subscripts that denote time-
agged vectors or matrices. The proof of above theorem can be found
n Appendix B.
4.2. DiPCA model relations

Assuming the number of latent variables is chosen as l in the
DiPCA model and collecting all latent score vectors and model vec-
tors into the following matrices,

T =
[

t̆1 t̆2 · · · t̆l
]

W =
[

w1 w2 · · · wl

]

P =
[

p1 p2 · · · pl
]

we have the following relation by iterating (27),

Xl+1 = X1 −
l∑
j=1

t̆jp
T
j = X − TPT (28)

or

X = TPT + Xl+1 (29)

In many cases, it is desirable to express the scores in terms of
the original data for the convenience of model calculations. Post-
multiplying (29) by W and using Relation 3. of Lemma  1, we can
obtain

XW = TPTW + Xl+1W

= TPTW

or

T = XR (30)

where

R = W(PTW)
−1

(31)

Pre-multiplying (31) by PT, we  can obtain

T T T −1

P R = P W(P W) = I (32)

Therefore,

(PRT )(PRT ) = PRT (33)



6 Y. Dong, S.J. Qin / Journal of Process Control 67 (2018) 1–11

w
r
r

X

F
v

t

a

x

T
b
d
k

e

w
d

t̂

w
d

x

W

x

W

4

t
t
a
t
P
i
r
d

e

T
F

Fig. 1. DiPCA dynamic whitening filter structure.

hich is idempotent. Relation (31) and (33) are the same as the
elations of R and P matrices of PLS given in [17,18]. (29) can be
ewritten as

 = XRPT + Xl+1

or a given vector xk that would appear as a row in X, the score
ector is calculated from (30) as follows

k = RTxk (34)

nd xk can be decomposed as

k = Ptk + x̃k (35)

he decomposition as (35) gives the partition of the space formed
y current data. To explore how the past data are related to current
ata, (24) should be used to derive the sample relation for the time

 as follows.

k = xk − Pt̂k

here ek is the one step ahead prediction error and tk can be pre-
icted using the result in (22) as

k =
s∑
i=1

�T
i tk−i = G(q−1)tk

here G(q−1) =
∑s

i=1�T
s+1−iq−i is the transfer function of the

ynamic model and q−1 is the backward shift operator. Therefore,

k = PG(q−1)tk + ek (36)

ith the additional static PCA on ek, for a sample vector xk, we  have

k = PG(q−1)tk + Prtk,r + ek,r (37)

e call tk dynamic latent variables, and tk,r static latent variables.

.3. Dynamic whitening filter

DiPCA can also be viewed as a preprocessing filter that applied
o xk before PCA modeling. Since there are possible dynamic rela-
ionships in the data, directly applying traditional PCA to xk is not
ppropriate. After DiPCA is first applied to the data xk, the predic-
ion errors are essentially white, which makes them suitable to use
CA to model the latent structure in ek. Therefore, DiPCA can be
nterpreted as a whitening filter which removes all the dynamic
elationships in data. Mathematically, based on (34) and (36), the
ynamic whitening filter can be written as

−1 T

k = [I − PG(q )R ]xk

he block diagram of DiPCA dynamic whitening filter is shown in
ig. 1.
Fig. 2. Confidence region of t̂k indicated by ϕ.

5. Fault detection based on DiPCA

In process monitoring based on PCA, squared prediction error
(SPE) and Hotelling’s T2 are typically used for detecting abnormal
situations. SPE monitors the variations in the residual subspace, and
Hotelling’s T2 monitors variations in the principal component sub-
space [19,20]. Process monitoring based on DiPCA can be divided
into two  parts: the monitoring of dynamic relationships and the
monitoring of static relationships. Dynamic latent scores, dynamic
residuals, static latent scores, and static residuals can be calculated
respectively as follows.

tk = RTxk

vk = tk − t̂k; t̂k =
s∑
i=1

�T
i tk−i

ek = xk − Pt̂k

tr,k = PTr ek

er,k = (I − PrPTr )ek

(38)

It is clear from (37) that process monitoring should be performed on
t̂k, tr,k and er,k respectively. However, since t̂k is dynamic and could
even be unstationary, monitoring t̂k can result in high false alarm
rate. Therefore, the monitoring of t̂k can be performed through vk.
Since vk can be cross-correlated, it is appropriate to build another
PCA model on vk and construct a combined index to monitor vk
[21]. The combined index for vk is defined as

ϕv = vT
k
�vvk = T2

v

�2
v

+ Qv

ı2
v

�v = Pv�−1
v PTv
�2

v
+ I − PvPTv

ı2
v

(39)

where �v = 1
N−1 VTV, T2

v and Qv are the fault detection indices for
PCA based fault detection on vk, and �2

v and ı2
v are the corresponding

control limits as in [21]. In this way, the control region of the predic-
tion t̂k can also be indicated by the control region of the combined
index ϕv as Fig. 2.

In this figure, the elliptical area indicates the control region of

the combined index ϕv, which is also the control region centered
around the prediction t̂k.
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Fig. 3. Autocorrelation and crosscorrelation of xk of simulation data.

Fig. 4. Autocorrelation and crosscorrelation of tk of simulation data.
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The monitoring of ek can be performed as traditional PCA based
rocess monitoring, where T2

r and Qr are defined as follows,

T2
r = tTk,r�

−1
r tr,k = eT

k
Pr�

−1
r PTr ek

Qr =
∥∥er,k

∥∥2 = eT
k
(I − PrPTr )ek

here �r = 1
N−1 TTr Tr . Control limits for T2

r and Qr can be deter-
ined based on the results in [21], for instance.

. Case studies

Two case studies are presented in this section. The first case
tudy is performed on simulation data, and the second case study
s performed on Tennessee Eastman Process (TEP) data. The effec-
iveness of the proposed DiPCA modeling and process monitoring
lgorithms are demonstrated in both cases.

.1. Simulation Data

In this simulation, tk is generated from a VAR(1) process, and xk
s generated from a latent variable model as

tk = c + Atk−1 + vk

xk = Ptk + ek

A =

⎛
⎝ 0.5205 0.1022 0.0599

0.5367 −0.0139 0.4159

0.0412 0.6054 0.3874

⎞
⎠ , c =

⎛
⎝ 0.5205

0.5367

0.0412

⎞
⎠

P =

⎛
⎜⎜⎜⎜⎝

0.4316 0.1723 −0.0574

0.1202 −0.1463 0.5348

0.2483 0.1982 0.4797

0.1151 0.1557 0.3739

0.2258 0.5461 −0.0424

⎞
⎟⎟⎟⎟⎠

here ek ∈ R
5∼N([0, 0.12]), and vk ∈ R∼N([0, 12]). 3000 data

oints are generated. First 1000 data points are used as a train-
ng dataset to train the DiPCA model. The next 1000 data points
re used as a validation dataset to determine the dynamic order s
nd the number of dynamic latent variables l. The last 1000 data
oints are used as a testing dataset to evaluate the proposed fault
etection indices.

By using the method described in Section 3, s = 1 and l = 3 are
elected. Figs. 3 and 4 show the autocorrelation and crosscorrela-
ion of the original variables xk and the dynamic latent variables
k respectively. It is clear from both figures that strong dynamic
elationships exist in xk and tk. After DiPCA modeling, the auto-
orrelation and crosscorrelation of the prediction error ek and the
nnovation vk are plotted in Fig. 5 and 6. The results show that all
he autocorrelation and crosscorrelation coefficients are close to
ero except at lag 0. This indicates that dynamic relationships are
emoved from xk and tk, and only static relationships remain in ek
nd vk, which can be further modeled by PCA.

To test the performance of the fault detection indices, the fol-
owing two types of faults are added to the test dataset. Since there
s no residual subspace for vk, ϕ reduces to T2

v .

 tk : = tk + [0 5 0]T, k > 500. In this case, the fault occurs in the
dynamic components and is detected by ϕ and T2

r indices. How-

ever, since this fault does not affect the residual part of the static
relationships, it is not detected Qr index. This can be seen from
Fig. 7.

 When k > 500, Fig. 5. Autocorrelation and crosscorrelation of x̃k of simulation data.
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Fig. 6. Autocorrelation and crosscorrelation of vk of simulation data.

r
i

3

6

c
b
i

Fig. 8. Fault detection results of fault 2 on simulation data.
Fig. 7. Fault detection results of fault 1 on simulation data.

xk := xk+

5 ∗ [0.0455 0.3877 − 0.8365 0.2911 0.2513]T

In this case, the fault occurs in the residual part of the static
elationships. Therefore, this fault is only detected by Q index, other
ndices remain unaffected as shown in Fig. 8.

 A : =1.2 * A, other matrices in the model remain the same. In this
case, the VAR model is unstable. 500 data points are used to train
the DiPCA model, 100 data points are used as test dataset to check
the false alarm rate of three fault detection indices. The results
are shown in Fig. 9. It is clear from the figure that T2

d
has a high

false alarm rate when the process is unstable. Therefore, it should
not be used for fault detection purpose.

.2. Data from an industrial boiler
Four sensors with 430 samples were collected from a boiler pro-
ess under normal operating conditions. 330 samples are used to
uild the DiPCA model, and the remaining samples are used for test-

ng. s = 2 and l = 2 are selected according to the method described
Fig. 9. Fault detection results of faulty data with unstable dynamics.

in Section 3.4. In this example, there is no residual subspace for
vk, therefore, the combined index ϕv reduces to T2

v . Fig. 10 shows
the crosscorrelations of ek, from which we can see that negligible
dynamics remain in the prediction error ek after DiPCA modeling.

Figs. 11 and 12 show the crosscorrelation of tk and vk respec-
tively. It is obvious that strong dynamic relationships exist in tk,
while only static relationships remain in vk after a VAR model is
built for tk.

Fig. 13 shows the control region for dynamic components at
different time stamps. In Fig. 13, the points with solid or hollow
circles indicate t̂k and the points marked with asterisks indicate
tk. The ellipses indicate the control region that is centered around
the predicted scores. In process monitoring, a sample is considered
normal if tk is inside the control region centered around t̂k, and
faulty if tk is outside the control region. We can see from Fig. 13 that
all tk are within the control region when no fault occurs. In addition,
the control region varies with time. This is the main difference from
static PCA where the control region does not change over time.

6.3. TEP data
The Tennessee Eastman Process was developed to provide a
realistic simulation of an industrial process for the evaluation of
monitoring methods [22]. The process contains 12 manipulated
variables and 41 measured variables. The measured variables con-
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Fig. 10. Crosscorrelation of ek of data from an industrial boiler.

Fig. 11. Crosscorrelation of tk of data from an industrial boiler.

Fig. 12. Crosscorrelation of vk of data from an industrial boiler.

Fig. 13. Control regions for dynamic components at different time stamps.
Fig. 14. Autocorrelation and crosscorrelation of tk of TEP data.

tain 22 process variables sampled every 3 min, and 19 quality
variables sampled with dead time and time delays. In this case
study, 22 process variables XMEAS(1-22) and 11 manipulated vari-
ables XMV(1-11) are collected as X. 480 data points are used as
training dataset. By using the parameter determination method
described earlier, s = 3 and l = 13 are selected. Fig. 14 shows the
autocorrelation and crosscorrelation of the first four dynamic latent
variables tk, and Fig. 15 shows the autocorrelation and crosscorre-
lation of the innovations vk. From Fig. 14, we  can see that there are
obvious autocorrelation and crosscorrelations in tk. After dynamic
modeling, little dynamic crosscorrelations are left in vk, which can
be seen from Fig. 15.

The false alarm rates of ϕv, T2
r and Qr indices are 5.54%, 6.58%,

and 9.82% respectively. Table 3 shows the fault detection rates of
three fault detection indices for 15 known faults in TEP. The fault
detection results show that most of the faults can be detected suc-
cessfully by the proposed fault detection indices, except for faults
IDV(3), IDV(9) and IDV(15). The types of disturbances of these three

faults are listed in Table 4. As discussed in [23], these three faults
are hard to detect for all the popular process monitoring methods.
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Fig. 15. Autocorrelation and crosscorrelation of vk of TEP data.

Table 3
Fault detection rate based on the DiPCA model.

Fault type ϕv T2
r Qr

IDV(1) 100 99.50 100
IDV(2)  99.00 98.62 97.87
IDV(3)  6.65 7.53 12.55
IDV(4)  97.49 100 27.73
IDV(5) 22.08 22.33 97.74
IDV(6)  100 99.37 100
IDV(7)  83.56 100 88.33
IDV(8)  95.86 94.10 95.98
IDV(9)  7.53 8.41 13.17
IDV(10) 15.18 13.93 77.16
IDV(11) 76.66 88.83 42.53
IDV(12) 95.23 95.61 99.00
IDV(13) 94.86 92.35 96.74
IDV(14) 100 100 100
IDV(15) 7.15 8.28 13.43

Table 4
Description of undetected disturbances. These disturbances have little impact on
the overall process behavior due to feedback control.

Type Description

IDV(3) D feed temperature (step)

7

d
c
m
t
d
d
a
u
t

i
a
e
b

using the same reasoning.
IDV(9) D feed temperature (random variation)
IDV(15) Condenser cooling water valve (sticking)

. Conclusions

In this paper, a dynamic inner PCA algorithm is developed for
ynamic data modeling by maximizing the covariance between the
omponent and the prediction from its past values. In the proposed
ethod, a dynamic latent variable model is extracted first to cap-

ure the most auto-covarying dynamics in the data. The captured
ynamic components contain the self-predictable variations of the
ata, while the residuals after extracting the dynamic components
re essentially uncorrelated, least predictable and can be treated
sing static PCA. A cross-validation method is given to determine
he order and the number of dynamic latent variables.

Geometric properties of DiPCA method are derived to give
nsight into the DiPCA model structure. The DiPCA objective guar-

ntees that static variations in the data are left in the residuals after
xtracting dynamic components. In this case, the DiPCA model can
e interpreted as a whitening filter with a dynamic latent struc-
ss Control 67 (2018) 1–11

ture, where the dimension of the dynamic latent space is generally
smaller than the dimension of the original variable space. This fea-
ture is not available in other time series modeling or the Kalman
filter approach.

For the purpose of process monitoring, three fault detection
indices for the dynamic latent model and the subsequent static
PCA model are derived. After filtering out the principal dynamics,
the residual data are essentially white and therefore appropriate
for PCA based monitoring. Since the whitening filter leaves white
noise in the residuals, the overall residual space after DiPCA filter-
ing has the same dimension as the original measurement space,
but with deflated variance-covariance. The extracted dynamic
principal components provide clear dynamic visualization and
monitoring. Case studies on simulation data, boiler process data,
and the TEP data demonstrated that the proposed DiPCA model-
ing method provides a unique way  to separate dynamic variations
with latent variables from static variations. Further, fault detection
indices are made reliable after separating the dynamic variations
from static ones.
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Appendix A. Proof of Lemma  1

1 From (27) we have

Xj = Xj−1 − t̆j−1pT
j−1

= Xj−1 − t̆j−1 t̆
T
j−1Xj−1/t̆

T
j−1 t̆j−1

= (I − t̆j−1 t̆
T
j−1/t̆

T
j−1 t̆j−1)Xj−1

(A.1)

It is clear that this is a recursive relation for Xj. Iterating this relation
until Xi+1 appears, Relation 1. in Lemma  1 will be resulted with

H = (I − t̆j−1 t̆
T
j−1/t̆

T
j−1 t̆j−1)· · ·(I − t̆i+1 t̆

T
i+1/t̆

T
i+1 t̆i+1) (A.2)

2 In (A.1) if t̆j is replaced by t̆j = Xjwj , we have

Xj = Xj−1 − t̆j−1pT
j−1 = Xj−1 − Xj−1wj−1pT

j−1

= Xj−1(I − wj−1pT
j−1)

(A.3)

Again, this is another recursive relation for Xj. Iterating this relation
until Xi+1 appears, Relation 2. of Lemma  1 will be resulted.

3 From Relation 1. in Lemma  1 and (A.1) we have

Xjwi = HXi+1wi = H(I − t̆i t̆
T
i /t̆

T
i t̆i)Xiwi

= H(I − t̆i t̆
T
/t̆
T
i t̆i)t̆i = 0

(A.4)

which proves Relation 3. of the Lemma  1.

4 From Relation 2. and (A.1) again, we have

t̆
T
i Xj = t̆

T
i Xi+1G = t̆

T
i (I − t̆i t̆

T
i /t̆

T
i t̆i)XiG = 0 (A.5)
5 Using the expression for pi, Relation 5. of Lemma 1 can be easily
shown as follows.
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T
i pi = wT

i XTi t̆i/t̆
T
i t̆i = t̆

T
i t̆i/t̆

T
i t̆i = 1 (A.6)

ppendix B. Proof of Theorem 1

To show relations 1. and 2. for i /= j, it suffices to show them for
he case of i < j, since the case of i > j can be shown by symmetry.
sing the expression for wj we have,

j = c

s∑
d=1

ˇd,j(X
T
s+1,j t̆d,j + XTd,j t̆s+1,j) (B.1)

here c is a proportional constant. Since Xd,j and Xs+1,j are sub-
atrices of Xj, wT

i
XTj = 0 implies wT

i
XTd,j = 0 and wT

i
XTs+1,j = 0,

hich further implies wT
i

wj = 0. This is obvious from Relations 3.
f Lemma  1. Furthermore, using Relation 4. of Lemma  1,

T
i t̆j = t̆

T
i Xjwj = 0 (B.2)

sing Relation 3. of Lemma  1 again,

T
i pj = wT

i XTj t̆j/t̆
T
j t̆j = 0 (B.3)
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a  b  s  t  r  a  c  t

Partial  least  squares  (PLS)  regression  is  widely  used  to  capture  the  latent  relationship  between  inputs
and  outputs  in  static  system  modeling.  Several  dynamic  PLS  algorithms  have  been  proposed  to  capture
ccepted 21 April 2018

eywords:
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the  characteristics  of  dynamic  data. However,  none  of  these  algorithms  provides  an explicit  expression
for  the  dynamic  inner  and  outer  models.  In  this  paper,  a dynamic  inner  PLS  algorithm  is proposed  for
dynamic  data  modeling.  The  proposed  algorithm  provides  an  explicit  dynamic  inner  model  that  is ensured
in  deriving  the  outer  model.  Several  examples  are presented  to  demonstrate  the  effectiveness  of the
proposed  algorithm.

© 2018  Elsevier  Ltd.  All  rights  reserved.
. Introduction

Partial least squares or projection to latent structures (PLS)
as been developed to model inter-related variables with a latent
tructure between two blocks of data, i.e., an input block and an
utput block. A set of latent variables with a reduced dimension

s extracted in PLS that removes collinearity among the original
nput variables. A notable feature of PLS is that it is not sensitive to
ata collinearity in input and output compared to its predecessor,
anonical correlation analysis (CCA) [1] when they are used as a
egression method. The first work that gives the idea of PLS is [2],
hich bears its connection to principal component analysis (PCA).
owever, it is not until [3] the method began to become known

o the chemometrics community for multivariate calibration [4].
he tutorial work of [5] makes the method popularized, while [6]

s among the first to give a comprehensive account of PLS model
roperties. The work by Li et al. [7] further reveals the geometric
roperties of the PLS projection and its variants. In addition to its
bility to predict the output as a regression method, PLS tries to

nterpret the variance structure in the input data that co-vary with
he output data, which makes it a supervised data analytic tool [8].
owever, the two objectives are not always achievable simulta-

∗ Corresponding author at: The Mork Family Department of Chemical Engineering
nd  Materials Science, University of Southern California, Los Angeles, CA 90089,
nited States.

E-mail address: sqin@usc.edu (S.J. Qin).
1 Work on this paper was  done when the author was on leave from the University

f  Southern California.

ttps://doi.org/10.1016/j.jprocont.2018.04.006
959-1524/© 2018 Elsevier Ltd. All rights reserved.
neously. It can happen that a small variance direction in the input
space is most useful to predict the output [7]. In this situation a large
portion of variance in the input is unexplained in PLS. A recent work
by [9] provides a concurrent PLS modeling and monitoring scheme
for the input and output data in the latent space that is suitable to
monitor both input space anomalies and output space anomalies
simultaneously.

However, to model dynamics in the data, PLS has to be extended,
since the original PLS achieves a static model relation only. PLS usu-
ally involves an outer model that serves to reduce the dimension
of the input and output space to derive latent factors and an inner
model that serves to predict output latent scores from input scores.
In static PLS, neither the inner model nor the outer model involves
any dynamic relations. A straightforward method is proposed by
[10,11], where a number of lagged inputs are included in the aug-
mented input matrix. Finite impulse response (FIR) inner models
are built between inputs and outputs after outer models converge.
The disadvantage of this method is that it does not give an explicit
representation of the latent relationship. The augmented loading
matrix is even larger in dimension than the original input space
and is difficult to interpret.

The work in [12] proposes a modified PLS modeling algorithm.
It provides a compact representation as no lagged variables are
included in the outer model. Data are pre-filtered with the hope that
dynamic components in the inputs are removed. A dynamic inner

model and a static outer model are built between filtered inputs and
outputs. Lakshminarayanan et al. [13] propose a similar method by
building dynamic inner relationship between input scores and out-

https://doi.org/10.1016/j.jprocont.2018.04.006
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2018.04.006&domain=pdf
mailto:sqin@usc.edu
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ut scores, but the outer model is not compatible with the inner
odel since it ignores the dynamics in the data entirely.

Recently, [14] proposed a dynamic PLS method by utilizing a
eighted combination of lagged input data as the input to the

lgorithm. An inner model is built between output scores and a
eighted combination of lagged input scores. This gives a compact
odel and a compatible inner and outer model. However, the inner
odel is not explicit and difficult to interpret.

In this paper, a dynamic inner PLS (DiPLS) algorithm is pro-
osed. The proposed algorithm involves an explicit dynamic model
nd outer model that is compatible with the inner dynamic model
tructure. An iterative method, derived by applying the Lagrange
ultiplier technique, is proposed to maximize the covariance

etween the output latent scores and the predicted scores from
nput scores with a dynamic inner model relation. The resulting
ynamic model makes the output dynamically related to the latent
ariables, while the latent variables are a projection of the input
ariables to a lower-dimensional subspace. More importantly, the
ynamic latent variables are extracted with the supervision of the
utput data, making it radically different from dynamic factor mod-
ls. The explicit and compatible model representation makes it easy
o interpret the results.

The remaining sections of the paper are organized as fol-
ows. Section 2 reviews the traditional PLS objective function and
resents a dynamic PLS objective that is dictated by a dynamic inner
odel. Section 3 presents the proposed DiPLS algorithm based on

he new dynamic PLS objective. Section 4 presents the geometric
roperties of DiPLS and its model relationships. Section 5 presents
everal examples to show the effectiveness of the DiPLS algorithm.
ection 6 gives conclusions.

. Dynamic partial least squares formulations

.1. The PLS objective

A complete form of PLS is first given by [3] to perform regression
ith collinear input variables, which is common for routine oper-

tion data. The PLS algorithm performs regression with collinear
nput variables by projecting to a lower dimensional latent space
ne dimension at a time. This is effectively a version of conjugate
radient methods for the linear regression problem. This approach
ot only avoids direct inversion of a potentially ill-conditioned
atrix in ordinary least squares, it also provides a way to trade

ff between the model prediction variance and bias by selecting an
ppropriate number of latent variables through cross-validation.
LS extracts a pair of latent variables from inputs and outputs such
hat their covariance is maximized. First, loading vectors for inputs
nd outputs are used to generate the latent variables. Then a lin-
ar inner model is built between input scores and output scores.
he input scores are used to deflate the input matrix, while the
stimated output scores calculated from the inner linear model are
sed to deflate the output matrix.

Consider the input matrix X and output matrix Y, the objective
f PLS is

max  qTYTXw

s.t. ‖w‖ = 1, ‖q‖ = 1
(1)

here w and q are input and output weights, respectively. The
olution to this optimization problem with the Lagrange multiplier
echnique is given as follows
XTYYTXw = �ww

YTXXTYq = �qq
(2)
ss Control 68 (2018) 64–72 65

which indicates �w and �q are eigenvalues and w and q are
eigenvectors of the corresponding matrices. After the outer model
converges, latent score vectors t and u can be calculated as t = Xw,
and u = Yq.  An inner model can be built between u and t by a simple
linear regression as follows

X:=X − tpT (3)

Y:=Y − btqT (4)

where b = uTt/(tTt) is obtained by regressing u to t. This process
is iterated until enough factors are extracted. Details for the PLS
algorithm can be found in [6,5].

2.2. Dynamic inner PLS objective

It is clear from the objective and procedure of PLS that only
static relations in the input and output are extracted by PLS. To
build dynamic PLS (DPLS) models, a straightforward approach is to
extend the input matrix with time-lagged inputs, as proposed in
[11] in a nonlinear dynamic PLS scheme. While this DPLS approach
is simple, it is difficult to interpret the extracted latent factors, and
the dynamic model tends to have excessive parameters.

An alternative approach proposed by [12,13] keeps the outer
model the same as that in static PLS, but builds a dynamic inner
model between u and t. This approach is inconsistent between the
outer model treatment and inner model treatment, as the static
outer model via the static objective has no intention to extract
dynamics in the latent scores u and t. It is possible that u and t
are statically uncorrelated but dynamically correlated, making this
approach fail.

Therefore, the outer model of a dynamic PLS should be extracted
based on the same dynamic inner relation, such as

uk = ˇ0tk + ˇ1tk−1 + · · · + ˇstk−s + rk

with the latent variables related to original variables as follows

uk = yT
k

q

tk = xT
k

w

where xk and yk are the input and output vectors at time k. For each
factor, the inner model prediction should be

ûk = xT
k

wˇ0 + xT
k−1wˇ1 + · · · + xT

k−swˇs

= [xT
k

xT
k−1· · ·xT

k−s](  ̌ ⊗ w)

where  ̌ = (ˇ0ˇ1 · · · ˇs)T and  ̌ ⊗ w is the Kronecker product. The
outer model that is consistent with the above inner dynamic model
should maximize the covariance between uk and ûk, that is, to max-
imize

1
N

N+s∑
k=s

qTyk[x
T
k xTk−1· · ·xTk−s](  ̌ ⊗ w) (5)

This objective is the dynamic inner PLS (DiPLS) objective that is first
proposed in [15], which gives rise to the DiPLS algorithm.

Let xk and yk be the input and output vectors at time k and
N + s + 1 samples of input and output are collected to form the fol-
lowing matrices

X = [x0 x1 · · · xs+N]T ∈ Rm×(N+s+1)

Y = [y0 y1 · · · ys+N]T ∈ Rp×(N+s+1)
Form the following data matrices using the samples,

Xi = [xi xi+1 · · · xi+N]T , for i = 0, 1, 2, . . .,  s (6)
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Zs = [Xs Xs−1 · · ·X0]

Ys = [ys ys+1 · · · ys+N]T

The objective of DiPLS in (5) can be reformulated as

max  J = qTYTs Zs(  ̌ ⊗ w)

s.t. ‖w‖ = 1, ‖q‖ = 1,
∥∥ˇ∥∥ = 1

(7)

here s is the impulse response order of the model. The dimension
f w is the same as the number of input variables. Note that the
atrix Zs contains Xs, which makes the inner model to include a

irect contribution from xk to yk. If s = 0 so that Ys is related to Xs

nly, DiPLS reduces to the static PLS.

. Dynamic inner PLS algorithms

Lagrange multipliers are used to solve this optimization in (7).
efine

L = qTYTs Zs(  ̌ ⊗ w) + 1
2
�q(1 − qTq)

+ 1
2
�ˇ(1 − ˇTˇ) + 1

2
�w(1 − wTw)

(8)

here

 ̌ ⊗ w) = (  ̌ ⊗ I)w = (I ⊗ w)  ̌ (9)

aking derivatives with respective to q, w,   ̌ and setting the results
o zero leads to the following results [15]

∂L
∂q

= YTs Zs(  ̌ ⊗ w) − �qq = 0

∂L
∂w

= (  ̌ ⊗ I)TZTs Ysq − �ww = 0

∂L
∂ˇ

= (I ⊗ w)TZTs Ysq − �ˇ  ̌ = 0

(10)

ultiplying qT, wT and ˇT on the left of the above three equations,
espectively, and making use of (9), it is easy to show that

q = �w = �ˇ = J

hat is, all of the multipliers are equal. Eq. (10) gives the solution
or q, w and  ̌ with a unknown proportional constant. Since these
ectors are unit norm, we find them as follows.

 = YTs Zs(  ̌ ⊗ w); q:=q/ ‖q‖ (11)

 = (  ̌ ⊗ I)TZTs Ysq; w:=w/ ‖w‖ (12)

 = (I ⊗ w)TZTs Ysq; ˇ:=ˇ/
∥∥ˇ∥∥ (13)

he latent variables of input and output can be calculated as

Xw = t ∈ RN+s+1

Yq = u ∈ RN+s+1
(14)

e further denote ti and us as follows
ti = [ti ti+1 · · · ti+N]T = Xiw, i = 0, 1, . . .,  s

us = [us us+1 · · · us+N]T = Ysq
(15)
ss Control 68 (2018) 64–72

where Xi is defined in (6). The Kronecker expressions (11)–(13) can
be simplified using (14) and (15) as follows

w = (  ̌ ⊗ I)TZTs Ysq =
s∑
i=0

ˇiX
T
s−iYsq = XTˇus

q = YTs Zs(  ̌ ⊗ w) = YTs

s∑
i=0

ˇiXs−iw = YTs

s∑
i=0

ˇits−i

 ̌ = [ts ts−1 · · · t0]Tus

where

Xˇ =
s∑
i=0

ˇiXs−i (16)

The inner model describing the dynamic relationship between
input scores and output scores should, therefore, be built between
us and ts, ts−1, · · · t0 by minimizing∥∥∥∥∥us −

s∑
i=0

ˆ̌
its−i

∥∥∥∥∥
2

Denoting ˆ̌ =
[

ˆ̌ 0 ˆ̌ 1 · · · ˆ̌ s
]T

and Ts = [ts ts−1 t0],  the least

squares solution is

ˆ̌ = (TTs Ts)
−1

TTs us (17)

and the model estimate

ûs =
s∑
i=0

ˆ̌
its−i = Ts ˆ̌

 (18)

The loading vector p for X can be derived as

p = XT t/tT t

Delation of X and Ys are performed as

X:=X − tpT

Ys:=Ys − ûsqT
(19)

Subsequent factors can be obtained from these residuals by repeat-
ing the same procedure. The algorithm of DiPLS modeling is
summarized in Appendix A.

3.1. DiPLS with one output only

If there is only one output, the traditional PLS is known as PLS1.
In PLS1, the loading vector q = 1, and the output score u = y. There-
fore, the iteration procedure reduces to one-step calculation of the
loading vector w and input score t. We  denote DiPLS in the case of
only one output to be DiPLS1. Similar to PLS1, q = 1 and us = ys in
DiPLS1. Using (13), it is clear that  ̌ should be a unit vector in the
direction (I ⊗ w)TZTs ys, that is,

ˇi = yTs Xs−iw

From (12) we  have

w ∝
s∑
i=0

ˇiX
T
s−iys =

s∑
i=0

XTi ysy
T
s Xiw
where “∝” denotes that both sides of it are proportional. Define

yTs,i =
[

0Ti yTs 0Ts−i
]
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here 0i ∈ R
i is a zero vector. It is easy to show that

T
i ys = XTys,i, for i = 0, 1, . . .,  s

herefore,

 ∝
s∑
i=0

XTys,iy
T
s,iX = XT ȲsȲ

T
s X

here

¯ s =
[

ys,0 ys,1 · · · ys,s
]

ow we can see that w is the eigenvector of XT ȲsȲ
T
s X corresponding

o the largest eigenvalue. After w is calculated, ˆ̌ can be obtained
sing (17). The portion of the output explained by DiPLS1 factor is

ˆs = ûs =
s∑
i=0

ˆ̌
its−i

nd the residual of ys is

s := ys − ûs

.2. DiPLS with auto-regressive dynamics

When it is desirable to include the auto-regression of the output,
he objective of DiPLS can be modified as

max  qTYs

⎡
⎣(

s∑
i=1

˛iYs−i

)
q +

⎛
⎝ s∑

j=0

ˇjXs−j

⎞
⎠w

⎤
⎦

s.t. ‖w‖2 = 1, ‖q‖2 = 1,
∥∥ˇ∥∥2 + ‖˛‖2 = 1

(20)

here ˛’s are the coefficients of different lags of Y. Denote

Vs = [Ys−1 Ys−2 · · · Y0]

˛ = [˛1 ˛2 · · · ˛s]
T

agrange multipliers can be used to solve the optimization problem
n (20). Define

L = qTYTs
[

Vs(  ̨ ⊗ q) + Zs(  ̌ ⊗ w)
]

+ 1
2
�q(1 − qTq)

+ 1
2
�w(1 − wTw) + 1

2
�(1 − ˛T  ̨ − ˇTˇ)

(21)

aking derivatives with respective to q, w,   ̌ and ˛, and setting the
esults to zero leads to the following results [15]

∂L
∂q

= [YTs Vs(  ̨ ⊗ I) + (  ̨ ⊗ I)TVTs Ys]q + YTs Zs(  ̌ ⊗ w) − �qq = 0

∂L
∂w

= (  ̌ ⊗ I)TZTs Ysq − �ww = 0
(22)
∂L
∂ˇ

= (I ⊗ w)TZTs Ysq − �  ̌ = 0

∂L
∂˛

= (I ⊗ q)TVTs Ysq − �  ̨ = 0
ss Control 68 (2018) 64–72 67

In addition, defining

Y˛ = Vs(  ̨ ⊗ I) =
s∑
i=1

˛iYs−i

u˛ = Vs(  ̨ ⊗ q) = Y˛q

tˇ = Zs(  ̌ ⊗ w) = Xˇw

Us = [us · · · u1] = Vs(I ⊗ q)

(22) can be further simplified as

YTs u˛ + YTs tˇ + YT˛us − �qq = 0

XTˇus − �ww = 0[
UTs

TTs

]
us = �

[
˛

ˇ

] (23)

where q, w, ˛,  ̌ are unit vectors. Eq. (23) leads to an iterative solu-
tion procedure to solve (20) with proper initialization of us,  ̨ and
ˇ.

The inner model is subsequently built as an ARX model of us,

us =
s∑
i=1

ˆ̨ ius−i +
s∑
i=0

ˆ̌
its−i + rs (24)

Then the prediction of output score ûs can be calculated using ˆ̨
and ˆ̌ which are formed from (24) using least squares.

4. DiPLS geometric properties and relations

4.1. DiPLS geometric properties

The DiPLS algorithm is different from the more traditional
dynamic PLS algorithms, which simply augment the input data with
time lagged values. Therefore, it is important to understand the geo-
metric properties of the DiPLS projections and how the data space
is partitioned when a dynamic inner model as well as a dynamic
outer model is employed. While the DiPLS objective (7) maximizes
the dynamic covariance between a latent variable of Y and a latent
variable of X, the actual DiPLS algorithm in Appendix A has embed-
ded in it important geometric properties such as orthogonality to
ensure numerical stability and robustness. To explore the DiPLS
geometric properties extracting j latent variables (LV), we  use a
subscript j to denote the iteration from one LV to another as follows.

Xj+1 = Xj − tjp
T
j with pj = XTj tj/tTj tj (25)

Ys,j+1 = Ys,j − ûjq
T
j (26)

From (25) and the relations in Appendix A, we  can obtain the fol-
lowing lemma.

Lemma  1. Suppose i < j. We  have the following relationships among
the residual matrices and loading vectors.

(1) Xj = HXi+1
(2) Xj = Xi+1Z
(3) Xjwi = 0 ∀ i < j
(4) XT t = 0 ∀ i < j
j i

(5) wT
i

pi = 1

Proof
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. From (25) we  have

Xj = Xj−1 − tj−1pT
j−1

= Xj−1 − tj−1tTj−1Xj−1/tTj−1tj−1

= (I − tj−1tTj−1/tTj−1tj−1)Xj−1

(27)

It is clear that this is a recursive relation for Xj. Iterating this
relation until Xi+1 appears, Lemma  1 is proven with

H = (I − tj−1tTj−1/tTj−1tj−1)· · ·(I − ti+1tTi+1/tTi+1ti+1)

. In Step 1 if tj is replaced by tj = Xjwj, we have

Xj = Xj−1 − tj−1pT
j−1 = Xj−1 − Xj−1wj−1pT

j−1

= Xj−1(I − wj−1pT
j−1)

Again, this is another recursive relation for Xj. Iterating this
relation until Xi+1 appears, Relation (2) of Lemma  1 is obtained.

. From Relation (1) in Lemma  1 and (27) we have

Xjwi = HXi+1wi = H(I − tit
T
i /tTi ti)Xiwi

= H(I − tit
T
i /tTi ti)ti = 0

which proves Relation (3) of the Lemma.
. From Relation (2) and (27) again, we have

tTi Xj = tTi Xi+1Z = tTi (I − tit
T
i /tTi ti)XiZ = 0

using the same reasoning.
. Using the expression for pi, Relation (5) of Lemma  1 can be easily

shown as follows.

wT
i pi = wT

i XTi ti/tTi ti = tTi ti/tTi ti = 1

with the above Lemma  we give the following theorem to sum-
marize some orthogonal properties of the DiPLS latent scores
and loadings.

heorem 1. For the DiPLS algorithm in Appendix A, the following
elations hold.

1) wT
i

wj = 0 ∀i /= j

2) tTi tj = 0 ∀i /= j
3) wT

i
pj = 0 ∀i < j

roof. To show relations (1) and (2) for i /= j, it suffices to show
hem for the case of i < j, since the case of i > j can be shown by
ymmetry. Using the expression for wj in Appendix A we have,

j = c

s∑
d=0

ˇd,jX
T
s−d,jus,j

here c is a proportional constant. Since Xs−d,j is a sub-matrix of

j, wT
i

XTj = 0 implies wT
i

XTs−d,j = 0, which further implies wT
i

wj = 0.
his is obvious from Relations (3) of Lemma  1. Furthermore, using
elation (4) of Lemma 1,

T
i tj = tTi Xjwj = 0
sing Relation (3) of Lemma  1 again,

T
i pj = wT

i XTj tj/tTj tj = 0
ss Control 68 (2018) 64–72

4.2. DiPLS model relations

Assuming the number of latent variables is chosen as l in the
DiPLS model and denoting

T =
[

t1 t2 · · · tl
]

Ûs =
[

ûs,1 ûs,2 · · · ûs,l
]

W =
[

w1 w2 · · · wl

]
P =

[
p1 p2 · · · pl

]
Q =

[
q1 q2 · · · ql

]
we have the following relations by iterating (25) and (26),

Xl+1 = X1 −
l∑
j=1

tjp
T
j = X − TPT (28)

Ys,l+1 = Ys,1 −
l∑
j=1

ûs,jq
T
j = Ys − ÛsQ

T
(29)

or

X = TPT + Xl+1 (30)

Ys = ÛsQ
T + Ys,l+1 (31)

The DiPLS model estimations for X and Y are

X̂ = TPT (32)

Ŷs = ÛsQT (33)

Since the scores tj of the DiPLS model are related to the residuals
Xj by wj, it is desirable to express the scores in terms of the original
data for the convenience of model calculations. Post-multiplying
(30) by W and using Relation (3) of Lemma  1, we can obtain

XW = TPTW + Xl+1W

= TPTW

or

T = XR (34)

where

R = W(PTW)
−1

(35)

This relation is the same as the PLS R matrix given in [16–18].
The DiPLS projection of X can be derived from (32) as follows.

X̂ = XRPT (36)

For a given input vector xk, which acts as a row of X, the DiPLS
scores, input estimate, and input residual are, respectively,

tk = RTxk (37)

x̂k = PRTxk = Ptk (38)

x̃k = (I − PRT )xk (39)

where x̃k is the residual of the DiPLS projection.
From (35) it is easy to see that

T T T −1

P R = P W(P W) = I (40)

Therefore,

(PRT )(PRT ) = PRT (41)
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hich is idempotent. Since PRT is not symmetric in general, PRT is
n oblique projector, similar to the PLS projections shown in [7],

P|R⊥ = PRT (42)

R⊥|P = I − PRT (43)

here �P|R⊥ is a projector onto the subspace Span{P} along the
ubspace Span{R}⊥. Although the DiPLS projections share the same
xpressions as the PLS projections, the DiPLS partitions of the data
pace are radically different from the PLS partitions.

The DiPLS output estimate is less conventional, but can be
erived from (33) by making use of the jth inner model in Appendix
,

ˆs,j =
s∑
i=0

ˆ̌
i,jts−i,j = bj(q

−1)ts,j

here bj(q−1) = ∑s
i=0

ˆ̌
i,jq

−i is the transfer function of the jth inner
odel and q−1 the backward shift operator. Denoting further

(q−1) = diag{b1(q−1), b2(q−1), . . .,  bl(q
−1)}

quation (33) can be expressed as follows,

ˆ s = ÛsQT = TsB(q−1)QT = XsRB(q−1)QT (44)

here Ts is defined similarly to Xs. The estimated ŷk, which takes a
ow of Ŷs, for a given input vector xk or tk is

ˆk = QB(q−1)tk = QB(q−1)RTxk (45)

ote that (38) and (44) jointly give the DiPLS latent variable model.
he estimate of the output is related to the input by a transfer
atrix.

.3. Exhausting DiPLS residuals

A major attractive feature of PLS is its ability to deal with highly
ollinear input data in X. The objective of PLS is to extract latent
ariables that are most relevant to exploring the output variations
hile effectively exploring the variance in the input space. In the

ase that the rank of X is less than the number of input variables, it is
nown that the number of PLS factors does not go beyond the rank
f X [19]. In other words all variations in X are represented with
he number of LV’s up to the rank of X. The above feature, however,
s not available for traditional dynamic PLS that simply augments
agged inputs to form an extended input matrix, as in this case the
xtended input matrix usually has a much larger dimension than
he original data matrix. Fortunately, this feature is preserved in
iPLS, since dynamic inner relations are built in the model. We

ummarize this feature of DiPLS in the following theorem.

heorem 2. Assuming rank(X) = r < m, where m is the number of
olumns of X, then, after r DiPLS factors are extracted, the input resid-
als Xr+j = 0 for j ≥ 0.

roof. Based on Relation (1) of Lemma  1, it is sufficient to show
hat Xr+1 = 0.

After r DiPLS factors are extracted, all latent scores are collected
n Tr = [t1t2 · · · tr]. By iterating the DiPLS outer model relations, we
ave

Xr+1 = Xr − trpTr = (I − trtTr /tTr tr)Xr
= · · ··  · ·
= (I − trtTr /tTr tr)· · ·(I − t1tT1/tT1t1)X
ss Control 68 (2018) 64–72 69

Using the orthogonality of tj in Theorem 1, it is straightforward to
show that the above relation is equivalent to

Xr+1 = (I − Tr(TTr Tr)
−1

TTr )X

which implies that Xr+1 is the projection of X on to span(Tr)⊥.
This theorem has several implications in practice. First, DiPLS

needs no more than m factors to exhaust all variabilities in the data.
This is a drastic improvement over the conventional dynamic PLS
where the input matrix is augmented with lagged data, which usu-
ally requires a large number of LVs to explore variabilities in the
data. Second, when the input data are not fully excited, which is
typical for routinely collected operational data, DiPLS needs only
up to the rank of X to extract all variabilities in the data. Since the
number of LV’s is closely related to and upper-bounded by the rank
of X, the extracted latent factors are fewer than those extracted by
traditional DPLS and are easy to interpret.

4.4. Eigenvector and singular vector interpretations

As in the static PLS, where the loadings can be interpreted
as eigenvectors or singular vectors of some matrices, the DiPLS
loadings also have eigenvector and singular vector interpretations.
Focusing on the DiPLS algorithm in Appendix A and using (16), the
outer model relations in Appendix A lead to

w ∝ XTˇus = XTˇYsq (46)

q ∝ YTs

s∑
i=0

ˇiXs−iw = YTs Xˇw (47)

where “∝” denotes that the quantities on both sides differ by a
proportional constant. The above relations can be rearranged as
follows,

w ∝ XTˇYsYTs Xˇw

q ∝ YTs XˇXTˇYsq

which indicates that w and q are indeed eigenvectors of the respec-
tive matrices. Since the DiPLS objective aims to maximize the
co-variation, these eigenvectors are the ones that correspond to
the largest eigenvalues of the respective matrices. Consequently,
from (46) it is straightforward to show that w and q are the left and
right singular vectors of XTˇYs corresponding to the largest singular
value. This interpretation is analogous to that given in [20] for static
PLS.

5. Case studies

In this section, three sets of data are simulated, each correspond-
ing to a scenario. In Scenario 1, both input X and Y are generated
from a static model. In Scenario 2, input X is generated from a static
model, and output Y is generated from a dynamic model. In Scenario
3, input X is generated from a dynamic model, and output Y is gen-
erated from a static model. The advantages of DiPLS over traditional
PLS is demonstrated in these three basic examples.

5.1. Scenario 1

X and Y are generated from a static process.
xk = Ptk + ek

yk = Cxk + vk
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Fig. 1. Prediction result of DiPLS and PLS for Scenario 1.

Table 1
ˇ0, ˇ1 for each factor in Scenario1.

Value Factor 1 Factor 2 Factor 3

P

w
t

u
p
a
t
v
t
s

w
w
a
f
i
D

5

f

f

Fig. 2. Prediction result of DiPLS and PLS for Scenario 2.

Table 2
ˇ0, ˇ1, ˇ3, ˇ4 for each factor in Scenario 2.

Value Factor 1 Factor 2 Factor 3

ˇ0 0.9940 0.9156 −0.9060

xk = Ptk + ek
ˇ0 0.9998 −0.9590 −0.9978
ˇ1 −0.217 0.2833 0.0670

 =

⎛
⎜⎜⎜⎜⎝

0.5765 0.2856 0.1614

0.3660 0.0458 0.9060

0.5889 0.4645 0.9942

0.3572 0.3450 0.7396

0.4036 0.6851 0.2262

⎞
⎟⎟⎟⎟⎠ , C =

⎛
⎜⎜⎜⎜⎝

0.7451

0.4928

0.7320

0.4738

0.5652

⎞
⎟⎟⎟⎟⎠

T

here ek ∈ R
5∼N([0, 0.52]), and vk ∈ R∼N([0, 0.52]),

k ∈ R
3∼N([0, 22]).

1000 data points are generated. The first 500 data points are
sed as training dataset to train the model, and the next 400 data
oints are used as the development dataset to select the parameter,
nd the last 100 data points are used as test dataset to evaluate
he prediction result. The optimal parameters determined by cross
alidation is s = 0 and the number of components is 3. s = 0 indicates
hat DiPLS reduces to traditional PLS, which is consistent with the
tatic model of inputs and outputs.

Fig. 1 shows the prediction results of DiPLS and PLS, from which
e can see DiPLS gives the same result as PLS. This is consistent
ith our analysis. If we increase s to 1, the values of ˇ0, ˇ1, which

re the weights of time lag 0 and 1, are listed in Table 1. We  can tell
rom the table that ˇ2

0 � ˇ2
1 for each iteration, which implies the

nput data with lag 1 has little impact in the outer model building.
iPLS reduces to PLS even though excess time lags are included.

.2. Scenario 2

X is generated from a dynamic process, while Y is generated
rom a static process.

tk = A1tk−1 + A2tk−2 + fk

xk = Ptk + ek

yk = Cxk + vk
k ∈ R
3∼N([0, 0.52]) where , P and C are the same as Scenario 1.
ˇ1 0.0821 0.3233 −0.1166
ˇ2 0.0691 0.0690 0.3554
ˇ3 0.0197 −0.2290 0.1980

A1 =

⎛
⎝ 0.6767 0.5809 0.9315

1.2812 −0.5343 − 1.6000

−1.5083 0.9991 0.7529

⎞
⎠

A2 =

⎛
⎝ 0.7155 −0.0652 1.1192

1.1132 −0.5371 − 0.1691

−0.5571 −1.0748 0.2330

⎞
⎠

We  use the same number of data points for the training dataset,
development dataset, and testing dataset for scenario 2 as scenario
1. The optimal parameters determined by cross validation is s = 0
and the number of factors is 3. The reason that s = 0 is because DiPLS
considers the covariance between the input and the output, not the
covariance of the input or the output. Therefore, s is only deter-
mined by the relationship between input and output. This example
shows that, even though the input variables contain dynamics, the
DiPLS model relation is static as long as the input–output relation
is static. This example also indicates that the dynamics left in the
input residuals should be further modeled dynamically if so inter-
ested. The prediction results of DiPLS and PLS are shown in Fig. 2.
From the figure, we  can see DiPLS gives the same result as PLS,
which is consistent with the analysis. When s is increased to 3, the
values of ˇ0, ˇ1, ˇ2, ˇ3 are listed in Table 2. We  can tell from the
table that ˇ0 is much larger than the square of other ˇ’s, therefore,
the input data with no lag dominates the DiPLS result. DiPLS per-
forms like a PLS model even though excessive lagged input data are
included.

5.3. Scenario 3

X is generated from a static process, while Y is generated from
a dynamic process.
yk = Cxk + C2xk−1 + vk

where P, C are the same as Scenario 1.
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Fig. 3. Prediction result of DiPLS and PLS for Scenario 3.

Table 3
ˇ0, ˇ1, ˇ3, ˇ4 for each factor in Scenario 3.

Value Factor 1 Factor 2 Factor 3 Factor 4

ˇ0 0.4251 0.1102 0.4528 0.9514
ˇ1 0.9009 −0.9850 0.8808 0.2832

t
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Fig. 4. Prediction result of DiPLS and PLS for TEP data.

Table 4
MSE  of PLS and DiPLS predictions on TEP data.

PLS DiPLS
ˇ2 −0.0707 0.1069 −0.1062 −0.0694
ˇ3 −0.0517 −0.0789 −0.0888 −0.0996

C2 =
(

1.9939 0.7728 1.0146 1.1563 1.2307
)

The same number of data points as in Scenario 1 are used as
raining dataset, development dataset, testing dataset. The optimal
arameters determined by cross validation is s = 1 and the number
f components is 4. Since yk is related to both xk and xk−1, s = 1 is
onsistent with the dynamic structure between X and Y. The pre-
iction results of DiPLS and PLS are shown in Fig. 3. From Fig. 3,
e can see when there are dynamics between inputs and outputs,
iPLS gives much better results than PLS. When s is increased to 3,

he values of ˇ0, ˇ1, ˇ2, ˇ3 are listed in Table 3 for 4 latent factors.
We can see the squares of ˇ2 and ˇ3 are much smaller than ˇ0

nd ˇ1 in general. Therefore, the input data with a lag of 2 and a
ag of 3 will have little impact on the result. The DiPLS models built

ith s = 1 and s = 3 are similar.

.4. Tennessee Eastman Process

The Tennessee Eastman Process (TEP) was developed to provide
 realistic simulation of an industrial process for the evaluation
f monitoring and control methods [21]. The process contains 12
anipulated variables and 41 measured variables. The measured

ariables contain 22 process variables sampled every 3 minutes,
nd 19 quality variables sampled with dead time and time delays.
n this case study, 22 process variables XMEAS(1–22) and 11 manip-
lated variables XMV(1–11) are used as input, XMEAS(38), which

s the calculated data from the analyzer, is used as output. The sam-
ling rate for XMEAS(38) is 0.25 h and dead time is 0.25 h. 400 data
oints are used as the training dataset, 80 data points are used as
he development dataset, and 960 data points are used as the test-
ng dataset. Data are pre-shifted to compensate the 0.25 h delay.
he optimal parameters determined by cross validation is s = 5, and
he number of components is 3. The prediction results of DiPLS and
LS is shown in Fig. 4.

Note that for XMEAS(38), there is only one measured value every

ve data points due to the lower sampling rate, and the subsequent

our values are artificial. Therefore, only 1/5 of the 960 data points
re compared. Fig. 4 shows that DiPLS captures trends in the data
etter than PLS. Table 4 gives the mean squared error (MSE) of PLS
MSE  0.9198 0.5503

and DiPLS predictions. We  can see that DiPLS method gives about
40% improvement over the PLS method. Therefore, this case study
shows that DiPLS performs better than PLS in TEP process modeling.

6. Conclusions

In this article, a dynamic inner PLS modeling method is pro-
posed for dynamic process and quality data modeling. The proposed
method gives an explicit representation of the dynamic latent
structures, by enforcing dynamic inner model structures when the
outer models are derived. DiPLS reduces to traditional PLS and gives
the same results as PLS if a particular latent factor has no dynamic
correlations. This feature makes DiPLS a general modeling approach
that can capture instantaneous as well as time-lagged input–output
correlations. The dynamic inner models can also accommodate the
case of time delays. Cross-validation is used in this paper to deter-
mine the optimal number of lags and the number of latent factors.
Case studies on simulation data and Tennessee Eastman Process
show that, when dynamic correlations are present in the data, it
is more efficient to model the data with DiPLS. In addition, the
DiPLS model does not directly augment the data matrix with a
number of lags in order to capture dynamics in the data, making
the outer model projections explicit and the compact number of
latent factors easy to interpret. The use of DiPLS models for process
monitoring and soft sensors will be studied in the future.
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Appendix A. The basic DiPLS algorithm
1. Scale X and Y to zero-mean and unit-variance. Initialize  ̌ with
[1, 0, . . .,  0]T, and us as some column of Ys.
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[20] M.H. Kaspar, W.H. Ray, Partial least squares modelling as successive singular

value decompositions, Comput. Chem. Eng. 17 (10) (1993) 985–989.
2 Y. Dong, S.J. Qin / Journal of

. Outer modeling. Iterate the following relations until conver-
gence achieved.

w =
s∑
i=0

ˇiX
T
s−ius; w:=w/ ‖w‖

t = Xw Form ts−i from t for i = 0, 1, . . .,  s

and Ts = [ts ts−1 · · · t0]

q = YTs

s∑
i=0

ˇits−i; q:=q/ ‖q‖

us = Ysq

 ̌ = [ˇ0 ˇ1· · ·ˇs] = [ts ts−1· · ·t0]Tus

ˇ:=ˇ/
∥∥ˇ∥∥

. Inner modeling. Calculate  ̌ using (17) and

ûs = Ts ˆ̌ = Ts(TTs Ts)
−1

Tsus

. Deflation. Deflate X and Y as

X:=X − tpT ; p = XT t/tT t

Ys:=Ys − ûsqT

. Repeat to Step 2 until enough latent variables are extracted.
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