
TOWARDS NEURAL NETWORK BASED 
CONTROL WITH GUARANTEES — 

APPLICATION TO A CHEMICAL REACTOR 

Tim Zieger1,2, Janine Matschek1, Hoang Hai Nguyen1, Thimo Oehlschlägel2,   
                                 Anton Savchenko1, and Rolf Findeisen1* 

   
1 Laboratory for Systems Theory and Automatic Control,  

Otto von Guericke University Magdeburg, Germany 
2 Department of Powertrain Mechatronics, iav GmbH, Gifhorn, Germany 

 
Merging machine learning and systems and control theory opens new possibilities to tackle 
uncertainty in an increasingly digitalized world where data and measurements become widely 
available. However, deriving guarantees, such as stability properties, within learning supported 
control is a challenging task. We outline a learning supported control approach that utilizes a special 
type of neural networks to approximate a baseline controller based on simulated or learned data. 
Applying recent results from neural network theory, we illustrate how stability guarantees can be 
embedded in the learning to guarantee closed loop nominal stability. The approach is underlined by 
a simulation example of a non-isothermal continuously stirred tank reactor. 
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Introduction

The design of controllers for many chemical and 
biotechnological processes can be highly involved. 
Often the underlying dynamics are complicated, contain 
nonlinearities, interconnections and coupling of multiple 
subsystems, as well as lower level controllers. Despite 
these challenges provable performance and stability 
properties should be achieved. Machine learning 
techniques, specifically neural networks,  recently 
gained popularity as valuable tools for both system 
modeling and control in many fields of applications, 
including process systems engineering, see e.g. 
(Akesson et al. 2005, Kittisupakorn et al. 2009, Lu and 
Tsai 2008, Mohanty 2009). For example, neural network 
controllers allow to approximate normal regulator 
designs, which could either be too expensive for real 
time application or insufficiently flexible for changing 
environmental conditions. However, providing 
(nominal) stability results for such controllers is in 
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general challenging. In (Nguyen et al., 2019) ideas to 
achieve stability of the closed loop system using neural 
networks as controllers have been outlined. To do so, a 
special type of neural networks (Ciccone et al., 2018) is 
employed, supported by either Lyapunov functions or 
the small gain theorem to provide convergence to an 
invariant set or input-output stability, respectively. In the 
frame of this paper we outline how these results can be 
applied towards problems from chemical engineering. 
Specifically we apply the developed approach to a 
nonlinear chemical reactor operated at an unstable 
equilibrium point. 
 
Basic idea and concept 
We briefly outline the results and ideas presented in 
(Nguyen et al., 2019) to provide a learning procedure 
that allows for stability analysis and defines criteria how 
to obtain such. 



  

 

Fig. 1.  Block diagram of a learning based 
controller operated in closed loop. Following 
along the lines of (Nguyen et al., 2019) stability 
of the closed loop can be achieved.   

Consider the continuous-time nonlinear system 
𝛴": �̇�(𝑡) = 𝑓+𝑥(𝑡), 𝑢(𝑡)., 𝑥(𝑡/) = 𝑥/, 

𝑦(𝑡) = ℎ+𝑥(𝑡), 𝑢(𝑡).,   (1) 

where 𝑥 ∈ 𝑅4, 𝑢 ∈ 𝑅5 denote the system states and 
inputs. Besides full state information, we assume that a 
baseline controller 𝜅7, which provides desirable closed-
loop system performance (or corresponding 
measurement data), is given. The data set 𝐷 used to train 
the neural network is provided in form of the tuples of 
control errors 𝑒(𝑡) = 𝑦(𝑡) − 𝑟(𝑡), with 𝑟(𝑡) being the 
reference signal and the corresponding inputs 𝑢7(𝑡) 
generated by the baseline controller. The neural network 
is trained such that  

𝛴<: 𝑢(𝑡) = 𝜅(𝑒(𝑡)) ≃ 𝜅7(𝑒(𝑡)), 

c.f. Fig. 1. It is not compulsory that the baseline 
controller is theoretically proven to stabilize the system, 
rather we aim for proving closed loop stability under the 
neural network controller. The structure of the neural 
network we employ is a Non-Autonomous Input-output 
Stable Network (NAIS-Net) (Ciccone et al. 2018), which 
is a special type of a residual neural network. It 
comprises one or several blocks, where an input is 
persistently applied to all layers within each block. In 
this work, we use one block structure and the hyperbolic 
tangent (tanh) as nonlinear activation function. The 
latent states 𝑧 of each layer 𝑖 of NAIS-Net are passed 
through to the next layer, making the propagation 
function have the form  𝑧(𝑖 + 1) = 𝑧(𝑖) + 𝜎(𝑊𝑧(𝑖) +
𝐻𝑣 + 𝑏), with the bias 𝑏 ∈ 𝑅4K, the persistent input 𝑣 ∈
𝑅4L, as well as the state and input transfer matrix 𝑊 ∈
𝑅4K×4K and 𝐻 ∈ 𝑅4K×4L (𝑛O and 𝑛P are the number of 
nodes and the dimension of the input, respectively). The 
nonlinear mapping 𝜎: 𝑅4K → 𝑅4K is a vector of element-
wise hyperbolic tangent functions. The output of the 
network for a finite number of hidden layers 𝑁 is 𝜙 =
𝛶𝑧(𝑁) + 𝑏U, where 𝑏U ∈ 𝑅4V  is the bias of the output 

layer, 𝑛W is the number of outputs and 𝛶 ∈ 𝑅𝑛Φ	×𝑛𝑧  is the 
output transfer matrix. 

 
Closed-loop System Stability via a Lyapunov function 
Linearizing the system (1) around its equilibrium point 
and given a known reference 𝑟, the closed loop system 
with a NAIS-Net controller with finite number of layers  
becomes 

�̇� = (𝐴 − 𝐵𝛶𝑊\"𝐻)𝑥 + 𝐵𝛿(𝑥) 
																									+𝐵(𝑏U − 𝛶𝑊\"𝑏).                          (2) 
Hereby, 𝐴 ∈ 𝑅4×4, 𝐵 ∈ 𝑅4×5 are the linearized time 
invariant system matrix and input matrix, respectively. 
The term 𝛿(𝑥) = 𝛶(𝑧(𝑁) − 𝑧̅) is bounded by an affine 
function with slope 𝛽 ≥ �̅�U||𝛶||||𝑊\"𝐻|| and 𝜌	dU 
represents an intrinsic parameter of the NAIS-Net that is 
adjusted during training to be smaller than one.  Based 
on those relations, there exists a maximum value 𝛽5ef 
such that the system is still stable. This maximum value 
can be computed by 𝛽5ef = g𝛼5ef and 𝛼5ef is 
obtained by solving the following LMI 
 

 
 
where 𝜏 > 0 is a fixed number resulting from the S-
procedure (see Boyd et al., 1994). Thus, the closed loop 
system matrix is given by 𝐴lm = 𝐴 − 𝐵𝛶𝑊\"𝐻, see also 
equation (2). Since the NAIS-Net is constructed such 
that �̅� < 1, 𝛽 becomes smaller when we increase the 
number of layers. If 𝛽5ef is known, we can choose the 
minimal number of layers 𝑁 to satisfy 𝛽 < 𝛽5ef as 
follows 

𝑁 ≥ 𝑁 = (ln𝛽5ef − ln||𝛶||||𝑊\"𝐻||) ln⁄ �̅� 
which guarantees closed loop stability. 
 
Application Example to a non-isothermal CSTR 
We apply the proposed approach to control a non-
isothermal continuously stirred tank reactor with an 
irreversible reaction A→B. Based on standard modeling 
assumptions (e.g. Arrhenius reaction kinetics, 
stationarity of liquid volume, negligible shaft work) the 
nonlinear state equations representing the material and 
energy balances can be derived as follows: 

𝑉�̇�s = 𝐹+𝑐s,u4	 − 𝑐s. − 𝑉𝑘/𝑒
\w
xy𝑐s	 

𝑉𝜌𝑐z�̇� = 𝜌𝑐z𝐹(𝑇u4 − 𝑇) 
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(𝑇 − 𝑇l,u4) −𝛥𝐻�4f𝑉𝑘/𝑒
��
��𝑐s. 

The state variables are the concentration of reactant A 𝑐s 
and the temperature inside the reactor 𝑇, while the 



control input is the coolant flow rate 𝐹l. The parameter 
values for the reactor volume 𝑉, flow rate 𝐹, inlet 
concentration 𝑐s,u4, the reaction constant 𝑘/, activation 
energy 𝐸, density 𝜌, heat capacity 𝑐z, inlet temperature 
𝑇u4, the coolant temperature 𝑇l,u4, coolant density 𝜌l, 
coolant heat capacity 𝑐zl, and reaction heat 𝛥𝐻�4f are 
taken from (Marlin, T. E., 1995 Appendix C).   
Linearizing the nonlinear systems equations around the 
unstable equilibrium point 𝑥" = 𝑐s,�� = 1.06 ����

�� , 𝑥< =

𝑇�� = 360K, 𝑢 = 𝐹l,�� = 15 ��

���
 leads to the dynamic 

system and input matrices 𝐴 ≈
[−1.89,−6.08𝑒\<; 1.16𝑒<, 2.62] and 𝐵 ≈ [0;−3.265], 
respectively. 

 

Fig. 2.  Closed loop response while using the 
baseline controller (dotted lines) and the trained 
neural network controller (solid lines) with input 
restriction of ±7 5�

5u4
.   

The considered baseline controller is a model predictive 
controller. Besides its advantages (as e.g. direct 
consideration of constraints, multi-input-multi-output 
systems, nonlinear systems, ...) applying predictive 
control comes with a high computational burden, 
especially if long prediction horizons are necessary to 
prevent large overshooting of the system or to establish 
stability. We used the outlined approach based on 2"£ 
data points for different initial conditions to train the 
network. The minimum number of required hidden 
layers to obtain  stability is 𝑁5u4 = 243 with 𝛽5ef =
0.2722 whereby each consists of 20 neurons. Note that 
the minimal slope is estimated by taking the minimizing 
state which originates in a set of equal distributed 
samples from the constraint state space. The  neural 
network controlled system exhibits satisfactory and 
achieves provable stability,  seen Fig. 2. 

 
Conclusions 
Providing stability results for learning based controllers 
is, even in the nominal case, challenging.  Considering 
so-called non-autonomous input-output stable neural 
networks, a lower bound on the number of layers can be 
obtained, that allows to achieve global or local stability 
for linear and nonlinear controlled systems, respectively. 
We used these to design a neural network controller for 
a non-isothermal continuously stirred tank reactor, 
which shows nonlinear behavior. The training was based 
on a model predictive controller, which was not tuned to 
achieve provably stable behavior. Despite this and the 
fact that input constraints are imposed a posteriori, the 
learned controller achieves closed loop stability for the 
nominal system. Future work will consider performance 
criteria with respect to approximation quality and 
imposing such constraints during the training of the 
neural network. Furthermore, extensions to different 
network structures are under consideration. 
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