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Nowadays, model predictive control (MPC)
has established itself as a state-of-the-art
control approach in many different areas
such as, for instance, the process industry,
robotics, or building climate control. It
is well known that a reasonable accurate
prediction model is critical to achieve good
performance and safe operation. However,
for many applications no or only limited
model knowledge is available. In this case
learned models that are based on input-
output data are a valuable alternative.
In this work we deal with nonlinear discrete
time systems represented by a nonlinear
autoregressive model with exogenous input
(NARX) of the form

yk+1 = f(xk, uk, dk) + ε (1a)
s.t. uk ∈ U , (1b)

where xk is the NARX state vector xk =
[yk, . . . , yk−my , uk−1, . . . , uk−mu ] that consists
of the current and past outputs y and in-
puts u. The output is corrupted by white
Gaussian noise ε. The system is further-
more subject to hard input constraints U
and soft output constraints Y.
The control objective is to steer the sys-
tem from an initial equilibrium to a tar-
get reference equilibrium, while satisfying
the input and output constraints. To this

end we employ model predictive control and
a Gaussian process [1, 2] to represent the
NARX model, which is then purely based
on measured input-output data. Note that
a GP prediction model is relatively easy
and always possible to construct, as long as
informative input-output data is available.
We use input data w = (xk, uk) and output
observations yk+1 to train the GP model.
The resulting posterior mean functionm+(w)
is then used as the next predicted output
yk+1. The resulting NARX prediction (2)
is then used in the optimal control prob-
lem. Furthermore f̄(x, u) , f(x, u, 0) is the
nominal model of (1a).
We establish stability by designing a suit-
able terminal cost function Vf(·) and termi-
nal control law κf(·). We consider a formu-
lation that does not require a terminal re-
gion by means of weighting Vf with a factor
λ ≥ 1, as proposed in [3]. We first establish
stability for the nominal case, i.e., when
the true system and the prediction/nominal
model are exactly the same. Based on the
nominal stability we show that the real pro-
cess controlled by the proposed predictive
controller is input-to-state (ISS) stable w.r.t.
the one step estimation error (between the
true and the nominal model) if this error
is bounded and if the true model function
and the nominal model, using the GP, are
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xk+1 = F̄ (xk, uk) = [f̄(xk, uk), yk, . . . , yk+1−my , uk, . . . , uk+1−mu ]
= [m+(w), yk, . . . , yk+1−my , uk, . . . , uk+1−mu ]

(2)

uniformly continuous.
Uniform continuity of the nominal model
can be ensured if the posterior mean func-
tion of the GP is uniformly continuous. This
can be achieved if the prior mean is uniform
continuous and if continuously differentiable
kernels (e.g. the squared exponential covari-
ance function, the Matérn class covariance
function with appropriate hyperparameters,
or the rational quadratic covariance func-
tion) are employed. In that case the process
is mean square differentiable [4, 1], i.e., the
posterior mean function is differentiable and
therefore also uniformly continuous.
Since the closed-loop system is ISS, there
exists a stability margin in the form of an
upper bound on the control error Ω(µ) as a
function of the norm of the one step estima-
tion error µ. Furthermore, if the probability
that the uncertainty is bounded by µ is ρ,
then the system will converge to Ω(µ) with
that same probability.
The proposed combination of a GP-NARX
prediction model and the output feedback
MPC is illustrated using a continuous stirred-
tank reactor example [5]. We compare the
outcome with an output feedback MPC
scheme that uses the true system dynamics
for the prediction.
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