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Abstract Overview 

Hybrid or semi-parametric models are composed of physics-based equations and data-driven surrogate 

model components.  Such models have shown great promise in the realm of process systems engineering 

due to their ability to accurately model a process where some of the system properties are known (i.e., 

continuity equations), but certain mechanisms are unknown or difficult to model (i.e., reaction or 

transport properties).  However, despite the promise of hybrid modeling, the method has yet to find much 

application in practical industrial case studies.  Lack of understanding of the hybrid modeling 

mechanisms and turn-key implementations of hybrid modeling techniques are the main reasons for lack 

of adaptation.  An evaluation of different implementations of hybrid modeling methods via open source 

software would encourage the widespread use of hybrid modeling.  Towards this end, we investigate two 

fundamentally different approaches to formulating hybrid models and evaluate their relative merit in 

terms of accuracy, efficiency, and generalizability to other systems. Using the sequential training 

procedure, the data-driven model is fitted without physical constraints, whereas when using the 

integrated approach, the data-driven model weights are optimized simultaneously with physical 

constraints obtained from the mechanistic model.  
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Increased computational power has brought machine 

learning to the fore of predictive modeling with its myriad 

empirical or data-driven techniques, achieving promising 

results in various fields of science and engineering. 

However, limitations inherent to machine learning (ML), 

such as poor extrapolation potential, raises interesting 

questions such as how to strike a balance between 

empirical and physics-based modeling for process systems 

engineering (PSE).  Not surprisingly, the proper merging 

of ML data-driven tools with traditional, mechanism-

driven approaches is not a new problem and has been the 

subject of study for many years (Thompson and Kramer, 

1994; Psichogios and Ungar, 1992).  Termed hybrid semi-

parametric modeling, these approaches have the 

advantages over other model-building techniques in that a 

system-level understanding can be achieved while certain 

mechanisms (i.e., reaction rates, transport properties, the 

effect of processing conditions) remain unknown (von 

Stosch et al., 2014).  This can be especially useful when 

developing the domain knowledge to accurately model the 

unknown mechanisms via classical mechanistic approaches 

is prohibitively expensive. 

However, applying hybrid modeling to PSE is not 

without obstacles.  The optimal structure of hybrid models 



  
 

 

can vary based on the end objective of the modeler and the 

development of appropriate surrogate models features its 

own domain of expertise with which the modeler often 

must become familiar.  For example, the volume and 

accuracy of the available data may necessitate certain 

surrogate models over others.  The burden imposed by 

these obstacles can be alleviated significantly by 

development of a framework wherein various hybrid 

models can be constructed and their performance 

validated.  We present two fundamentally different 

approaches to hybrid modeling, namely the sequential 

approach and the integrated approach. Both approaches are 

developed using open-source software chosen for their 

high-throughput capabilities and thorough documentation.  

We compare the performance of the two approaches in 

terms of ease of implementation, accuracy and application 

flexibility. A hybrid modeling benchmark of fed-batch 

fermentation is used as a case study.  In this case study, 

dynamic profiles of penicillin production are predicted via 

a combination of a mechanistic component (i.e., ODE 

continuity equations) and a data-driven component (i.e., 

rate equations). In the hybrid modeling literature, two 

structures have been proposed, namely the “serial” and 

“parallel” hybridization (von Stosch et al., 2014).  In this 

work, we focus on the “serial” approach, which entails 

representing via a data-driven model only the unknown 

component (in this case the reaction rates).  In the parallel 

architecture, the surrogate model corrects in parallel the 

predictions of the engineering model. However, in addition 

to requiring additional mechanistic knowledge, these 

“parallel” model configurations are known not to retain 

any extrapolation capabilities beyond a data-driven model 

(Van Can et al., 1996).   

Methods 

We make as our objective the modeling of a fed-batch 

penicillin production wherein the continuity relationships 

are known and observed, but the reaction rate mechanisms 

are unknown. A simulation of fed-batch penicillin 

fermentation is used to produce experimental data, 

consisting of reactor state variables biomass concentration 

(B), substrate concentration (S), penicillin concentration 

(P), and dilution rate (D).  The model for reaction kinetics 

is borrowed from (Thompson and Kramer, 1994).  Data is 

simulated for 9 fermentation batches for 200 hrs with 

samples taken at 3 hr intervals.   

We then validate the performance of the resultant 

model by simulating 6 fermentation batches, the first using 

conditions from the training set, while the remaining 5 

observe processing conditions not used to train the hybrid 

model (extrapolation).  The performance of the hybrid 

model is quantified as the mean squared error of the model 

prediction and simulated ‘experimental’ data.  Each 

approach is further tested in terms of its robustness to 

noisy data. 

 

 

Sequential parameter estimation and fitting 

In this approach, the system of mass balances, represented 

by ordinary differential equations, is first solved to yield 

the local rate values.  The solution of the rate values can be 

found via any algebraic modeling language with numerical 

discretization capabilities.  As a second step, a surrogate 

model is selected, in this case a neural network, which 

receives as inputs state variables B, S, P, D at time t and 

predicts the reaction rates during the period Δt.  From the 

equations from Thompson and Kramer, it is clear that each 

rate is a function of B and S only.  However, since such 

information is not always known a priori, we use all state 

variables as inputs.  The weights of neural network models 

are found through the backpropagation algorithm L-BFGS 

and optimal neural network structure is identified through 

grid-search and cross-validation.  Finally, the neural 

network is added to the ODE equations and tested on data 

simulated from the fed-batch model with different 

operating conditions. 

 

 
 

 

Figure 1.  The sequential approach (top) first 
solves for the unknown rates, then fits the 

parameters of a data-driven model separately 
and sequentially.  The integrated approach 

(bottom) solves for the rates and model 
parameters simultaneously. 

Integrated parameter estimation and fitting 

In the integrated approach, nonlinear local and global 

solvers are used to find the weight values of the neural 

network and the consequent values of the rates 

simultaneously.  A single surrogate model is used, which in 

this case is a neural network with the same structure as that 

used in the sequential approach for easy comparison. A 

local nonlinear solver is used to find the parameters of the 

data-driven model—in this case, the neural network 

weights—that also satisfy the mass balance constraints.  

The performance of this model is evaluated by comparing 

its performance with fermentation batch data from different 

operating conditions than those used to fit the hybrid 

model.  A comparison of the two approaches is depicted in 

Figure 1. 



  

 

Results 

Data used to test predictive capabilities of the hybrid 

models include operating conditions within the range of 

training data (interpolation) and outside the range 

(extrapolation).  Due to space limitations, only the more 

challenging extrapolating case is shown here (Figure 2), 

since the predictions of the interpolating cases match the 

experimental data with high accuracy.  The hybrid models 

are tested for extrapolation potential by predicting reactor 

performance when the initial biomass and feed 

concentrations are higher than those conditions used to fit 

the models.  As observed in Figure 2, overall the sequential 

model’s predictions are closer to that of the true data.  

However, in the more nonlinear regions, prediction deviate 

significantly, a sign of overfitting.  Moreover, in the case 

of penicillin predictions, the sequential hybrid model 

predicts negative product concentration during the initial 

hours of fermentation, violating physical constraints.  

Meanwhile, the integrated approach yields a hybrid model 

that violates non-negativity to a lesser degree.   

 

 

 

Figure 2.  Biomass (top) and penicillin 
(bottom) predictions from two approaches to 

hybrid modeling.  

Conclusions 

The two approaches explored above represent 

different modeling paradigms that govern their 

applicability.  In the sequential approach, modeling tools 

more familiar to the ML community are used to 

systematically vet various surrogate models before 

selecting an optimum via cross-validation.  This enables 

the user to make a straightforward comparison of multiple 

surrogate model types and structures.  Unfortunately, this 

method’s use of backpropagation can guarantee only a 

locally optimal solution even for the ‘best’ model.  In 

contrast, the integrated approach exploits nonlinear 

programming theory to solve for both the rates and the 

neural network parameters simultaneously, and, if a global 

solver is used, find a globally optimal solution.  The 

potential guarantee of global optimality is unique to the 

integrated approach and needs investigation.  However, it 

should be noted that computational requirements of this 

approach limit the exploration of possible neural model 

models to small structures for most applications of interest. 

In future work, we will investigate the robustness of 

the two approaches and explore more rigorously the merits 

and limitations of the two approaches in terms of modeling 

effort, computation time and prediction accuracy. 
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