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Abstract. This work explores the possibility of efficiently learning predictive process models from small or sparse 

data sets by blending domain knowledge, or understanding, into a machine learning strategy. We propose a 

strategy that we refer to as knowledge-constrained machine learning, in which process understanding is 

incorporated by way of mathematical constraints written into the learning algorithm. To make the proposed 

methodology concrete, we take a chemical reaction as our example process and explore the development of 

models that predict the reactant, product and impurity concentration profiles over time from select design 

variables. Using a fixed set of experimental data for a hydrogenation reaction in the synthetic route to AMG 

986—a molecule in Amgen’s portfolio—we compare the predictive accuracy of models resulting from the 

proposed methodology with those constructed by a pure machine learning strategy (no knowledge constraints) 

and with those produced by the more-commonly-applied approaches of semi-empirical rate law modeling and 

fully-empirical response surface modeling. The key result we take away from the analysis is: knowledge-

constrained machine learning can be used to establish predictive models in both the absence of a detailed 

mechanistic understanding and the absence of a uniform and large data set that spans the full design space; the 

same cannot be said for the pure machine learning, semi-empirical rate law, or response surface approaches. 

Scope: Modeling Objective, Example Process, and Development Task. There are at least two common objectives 

that motivate process modeling: to refine one’s conceptual understanding, and (or) to build a function—

mathematical or computational—that enables the quantitative prediction of process outcomes under different 

scenarios. The choice of modeling strategy should be informed by the dominant objective; in this work, we focus 

on process modeling with the objective of building a function that enables accurate predictions. And, more 

specifically, we explore strategies for creating domain-specific process models that predict process outcomes in 

a narrow domain—that is, over a low-dimensional and continuous design space. The example process we 

examine is a batch chemical reaction, and the development task in mind is reaction optimization. Mathematically 

expressed, the goal of the modeling task we consider is to identify a function, 𝑓, that accurately predicts the 

process outcome, 𝒚(𝑡), for given values of the design variables, 𝒙, over a fixed design space 𝒳. 

Goal. Identify a function, 𝑓, that accurately captures the mapping 𝒙 ↦ 𝒚(𝑡) across 𝒙 ∈ 𝒳. 

Example Reaction and Sources of Information. To aid in our exploration and discussion of modeling strategies for 

the above task, we use a hydrogenation reaction and consider two design variables: temperature and catalyst 

loading. With coded molecular structures, the reaction we consider is written as follows: 



 
Figure 1. Example Reaction. Coded representation of the hydrogenation reaction used as an example in this work. 

Taking this example, the modeling objective is to identify a function that predicts the concentration profiles for 

the reactant, 𝑦1(𝑡+), product, 𝑦2(𝑡), and the undesired enantiomer, 𝑦3(𝑡), as a function of the selected amount 

of catalyst, 𝑥1, and the temperature, 𝑥2. We explore creating this function applying different strategies that can 

pull from two sources of information: our understanding of the chemical reaction and experimental data 

collected under relevant conditions. The data we use consists of discrete time profiles for the reactant, product 

and enantiomer concentrations observed when the reaction was run at various points across the temperature-

catalyst loading design space. For analysis, the data is broken into Training and Test sets. 

 
Figure 2. Training and Test data sets. Training data consists of discrete concentration-time profiles collected at eight 
temperature-loading conditions; the Training data is not evenly distributed and does not span the full range of the possible 
design space 𝒳. Test data also consists of discrete concentration-time profiles collected at a later time, at five new points in 
the design space; some of these points fall within the domain of the Training data, while others fall outside of that domain. 

Methodology: Knowledge-Constrained Machine Learning. Strategies for creating reaction kinetic models tend to 

rely on either a detailed understanding of the reaction mechanism (first-principles and semi-empirical rate law 

modeling), or on having uniformly-distributed and accurate data that spans the design space of interest 

(response surface modeling). A core motivation behind the present work is to create a strategy that does not 

require either of these—that is, a modeling strategy that can work in the absence of a detailed mechanistic 

understanding and in the absence of uniformly-distributed and accurate data that spans the full design space. 

For this, we are proposing a knowledge-constrained machine learning methodology, that operates as follows. 

Starting with a set of training data we construct a “blank-slate” supervised learning algorithm for selecting the 

function 𝑓 that best fits the mapping 𝒙 ↦ 𝒚(𝑡) across the data available. The blank-slate supervised learning 

algorithm we have chosen uses least-squares regression to first interpolate between time points, fitting a 10th-

order orthogonal polynomial bases set to the discrete concentration-time data. And then uses non-parametric, 

weighted least-squares regression to interpolate and extrapolate across the 𝑥-domain, at any fixed time. This 

blank-slate supervised learning algorithm can be seen as fitting a very flexible hypothesis set of functions (could 
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reasonably represent any continuous function of 𝒙 and 𝑡). As such, it is highly susceptible to overfitting, and 

unlikely to produce a predictive model when applied to the limited training data set that we have in our example. 

To go from such strategy to one with a better chance of success, we take advantage of the general knowledge 

or expectations for reaction kinetics to impose constraints on the model a priori. For example, in the given 

hydrogenation, we expect the reaction to be irreversible—and the reactant concentration to decrease over 

time, while the product and enantiomer concentrations increase over time. We also expect the reaction to end 

eventually—that is, the concentrations should reach a steady state. Each of these expectations, along with any 

physical constraint, can be written as an inequality imposed on the function or an inequality imposed on a 

derivative of the function. That set of inequalities can then be added to the blank-slate supervised learning 

algorithm to create a knowledge-constrained fit. By this approach, the algorithm now searches for the best fit 

among functions that also meet each of the knowledge constraints imposed. The global learning algorithm can 

be written as a convex optimization problem and solved. In this work we use CVX, software for convex 

optimization, in Matlab. 

Key Results. Applying the knowledge-constrained machine learning algorithm described to the given example, 

we find that the methodology produces a model that predicts accurately over the Test data set and could be 

used for accurate reaction optimization over the design space. Comparatively: the pure or blank-slate machine 

learning strategy overfits the training data and predicts poorly; the semi-empirical rate law model we construct 

is a simplification of the true underlying mechanism (which is not fully known) and fits the training data well, but 

shows a notable bias in predicting the reaction outcome at conditions outside the training data set; and, finally, 

the response surface model that we use fits the data reasonably well and is easy to construct, but also results 

biased predictions that are both inaccurate and, in some instances, non-physical. 

 
Figure 3. Select Results. Applying a blank-slate machine learning algorithm results in a function that overfits the training data; the 
proposed knowledge-constraints are effective in mitigating this type of overfitting. In predictions across the Test set, the model 
produced by knowledge-constrained machine learning performs well; comparatively, clear biases are seen in the predictions made 
by the semi-empirical rate law and response surface models. 

Conclusion. The idea of knowledge-constrained machine learning holds promise for producing predictive process 

models in the absence of detailed mechanistic understanding and in the absence of large and accurate 

experimental data sets that span the full design space. We therefore expect the strategy to be of interest to 

broader community of Process Analytics and Machine Learning researchers. Our poster will expand on the 

strategy and detail the modeling results for the given example reaction. 
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