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Abstract  

This work focuses on efficiently using transient measurements in extremum seeking control to speed up 
the convergence to the optimum. This is done by using a dynamic extremum seeking scheme, where local 
linear dynamic models are used instead of local linear static models. In particular, we propose a novel 
robust extremum seeking scheme, where existing domain knowledge in the form of the process dynamics 
is incorporated in the extremum seeking scheme. By fixing the linear dynamics, we can use real-time 
transient measurement data to robustly estimate the local steady-state effect of the input on the cost 
function. In addition, we also provide some bounds on the unmodeled dynamics to ensure robust stability 
of the proposed dynamic extremum-seeking scheme.  
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Introduction

Traditional real-time optimization requires an elaborate 
nonlinear steady-state model of the system to compute the 
optimal solution. This can be challenging for many 
processes, where the nonlinear models may be structurally 
incorrect, or simply the cost of developing such models are 
too high. 

 In order to address the high cost of developing 
elaborate nonlinear models, there has been a surge of 
interest in the so-called “model-free” real time optimization 
(RTO) approaches such as extremum seeking control (ESC) 
and NCO (Necessary Condition of Optimality) tracking 
control, where the idea is to constantly perturb the system.  
The steady-state gradient from the cost to the input is then 
estimated using real-time process data. The estimated 
steady-state cost gradient is then driven to a constant 
setpoint of zero, thereby achieving the necessary condition 
of optimality.   
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The main disadvantage of extremum seeking control 
and related methods such as NCO-tracking, is the 
prohibitively slow convergence to the optimum. In order to 
estimate the steady-state cost gradient, the perturbation 
signal must be much slower than the plant dynamics, such 
that the dynamic plant can be approximated as a static map. 
Furthermore, the integral gain to drive the steady-state 
gradient to zero must be small enough such that the 
convergence to the optimum is much slower than the 
perturbation signal. In summary, this means that the overall 
convergence rate is about two orders of magnitude slower 
than the original plant dynamics (Kristic & Wang, 2000). 
For many process systems, which have long settling times, 
this leads to prohibitively slow convergence. Despite the 
very appealing characteristic of not requiring a detailed 
model, this makes extremum seeking control impractical for 
real-time optimization of most processes.  



  
 

 

The main reason for the slow convergence is the 
steady-state wait time, because of the simple local linear 
static approximation used in almost all variants of 
extremum seeking control. Using transient measurements 
leads to erroneous gradient estimates. In order to address the 
problem of slow convergence, one potential solution is to 
explicitly include the plant dynamics in the ES scheme. The 
use of measurements to repeatedly identify a local linear 
dynamic model around the current operating point for 
online optimization of slow chemical processes was first 
proposed by Bamberger and Isermann (1978) for 
Hammerstein plants, where ARX models were repeatedly 
identified online and the input was updated using an 
adaptation law in the same fashion as in most extremum 
seeking approaches. This approach can be seen as a 
dynamic variant of extremum seeking control for 
Hammerstein plants, where the cost measurements are used 
to identify a local linear ARX model, which is used to 
estimate the steady-state gradient, which is then driven to 
zero using integral action.  

In simulations, local linear dynamic models such as 
ARX models were shown to be an effective way of taking 
into account the plant dynamics, enabling fast convergence 
to the optimum for slow dynamic processes, since this 
effectively removes the assumption that the plant behaves 
like a static map. 

 Following the introduction of ARX-like local linear 
dynamic model to estimate the gradient in the 80's 
(Bamberger & Isermann, 1978), this approach has remained 
dormant, despite the recent surge of interest in extremum 
seeking control. This is probably because of the robustness 
problems that impede practical implementation of such 
approaches. Identifying an ARX model online, as opposed 
to estimating only the steady-state component, involves 
estimating additional parameters. Consequently, an issue 
with identifying ARX models online is the need for 
sufficient excitation to accurately estimate the parameters 
of the ARX model. As the system approaches its optimum, 
the steady-state relation between the input and the cost f(u) 
is typically flat and there is not sufficient excitation in the 
measured cost to accurately estimate all the parameters of 
the ARX model.  This leads to numerical bursting with 
sudden peaks in the estimated steady-state gradient, causing 
the control input to respond erratically close to the 
optimum. When identifying ARX models online in 
Bamberger and Isermann (1978), the optimizer was turned 
off once the plant reached its optimum. Therefore, this issue 
was not reported by Bamberger and Isermann (1978). 

Another major concern is that when estimating all the 
parameters of the ARX model, it may also lead to 
robustness issues due to the unmodeled dynamics. If the 
plant dynamics are different from the ARX model, then the 
steady-state gradient estimated using the ARX model may 
not be correct and can lead to robustness issues.  This makes 
the problem sensitive to the ARX model structure and in 
fact, it is very difficult to provide any robustness margins 
due to the neglected dynamics in the ARX identification 

problem, since the least square fitting problem may result in 
any value for the ARX model parameters. 

To summarize, the dynamic extremum scheme may not 
be robust when, 
• the process reaches closes to its optimum and the 

excitation is not sufficient to estimate all the ARX 
model parameters accurately, 

• process includes neglected dynamics not captured by 
the chosen ARX model structure. 

Robust Extremum seeking control using transient 
measurements 

 In order to address the robustness issues, we propose 
to fix the parameters of the G(s) with some nominal linear 
dynamics G0(s) in the estimation problem and use the online 
measured data to estimate only the unknown nonlinear 
steady-state component of the process. In other words, if 
domain knowledge in the form of time constants for the 
process dynamics G0(s) is known a-priori (for e.g. from step 
response tests), we can incorporate this knowledge in the 
online identification problem to estimate the steady-state 
effect of the process f(u) around the current operating point. 
This way, we can incorporate the “known” nominal system 
dynamics in the online gradient estimation problem which 
enables us to effectively use the transient measurements to 
estimate the steady-state gradient. Since the nominal linear 
dynamics G0(s) is known and fixed, we can then provide 
robustness margins for the neglected plant dynamics using 
classical robust control theory.  This provides a numerically 
stable approach to estimate the steady-state gradient using 
transient measurement data.  

Consider a plant, where the cost J is measured and can 
be represented as a Hammerstein model with a combination 
of a nonlinear, time-invariant mapping f(u) with proper, 
stable, finite-dimensional, linear, time-invariant (FDLTI) 
dynamics G(s) at its output, J = f(u)G(s). Let G0(s) denote 
the known nominal plant dynamics, which is transformed to 
discrete time transfer function G0(q).  

The nonlinear dynamic plant can then be approximated 
as a locally linear dynamic plant of the form,  

 
(1) 

where, the steady-state gain k is the local linear 
approximation of the nonlinear steady-state component f(u). 
In the proposed approach, we fix the parameters, 

  
and estimate only the local steady-state gain k of the plant 
(1). To do this, we solve the linear least squares problem, 
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By incorporating the a-priori knowledge about the plant 
dynamics, we show that the transient measurements can be 
used to significantly speed up the convergence of the 
extremum seeking scheme. In other words, we now use the 
transient measurement data to estimate only one unknown 
parameter, which is the steady-state gradient k. Reducing 
the number of parameters to be estimated makes the 
estimation problem more numerically robust.  

Due to the system nonlinearity, there could be 
unmodeled dynamics that are not included in the nominal 
dynamics G0(s). We show that unmodeled dynamics, 
(including inverse responses) can be treated as 
multiplicative uncertainty                     (Skogestad and 
Postlethwaite, 2007), where                             represents the 
complex perturbations and    denotes the multiplicative 
weight. In this case, we show that robust stability of the 
proposed extremum seeking scheme can be ensured as long 
as the unmodeled dynamics are bounded by, 

 
(4) 

with 𝑇" = (1 + 𝑘𝐺"𝐾)+,𝑘𝐺"𝐾 being the nominal 
complementary sensitivity function with the integral control 
action 𝐾 = 𝐾-/𝑠.  

Illustrative example 

We demonstrate the proposed robust extremum 
seeking control using a simple example, where the process 
is given by  𝐽 = 𝑓(𝑢)𝐺"(𝑠)𝑔(𝑠). Here, f(u) is the nonlinear 
steady-state effect, 𝐺"(𝑠) = 1/(174𝑠 + 1) is the known 
nominal linear dynamics and 𝑔(𝑠) = (−5𝑠 + 1)/(10𝑠 +
1) is the neglected dynamics. Note the neglected dynamics 
has a RHP-zero leading to inverse response.   

We first apply the dynamic extremum seeking scheme 
from Bamberger and Isermann (1978) (denoted by BI-
approach), where we identify a first order ARX model while 
neglecting the dynamics 𝑔(𝑠).  This is shown using gray 
lines in Fig.1(b), where we see that the by identifying all the 
parameters of the ARX model, the closed-loop response is 
clearly not robust due to the neglected inverse response in 
the process measurements. This leads to erratic behavior of 
the closed-loop system. The robust stability margins (4) are 
verified as shown in Fig.1(a). We then apply the proposed 
robust extremum seeking scheme by fixing the nominal 
dynamics 𝐺"(𝑠) and estimating only the steady-state gain 
from the process measurements using (2). This is shown in 
black curves, where we see that the closed-loop response is 
stable and is able to smoothly drive the process to its 
optimum, despite the neglected dynamics g(s).  

We also simulate the case with a small time delay 
uncertainty, 𝑔(𝑠) = 𝑒+".",;. The robust stability margins 
and the simulation results are shown in Fig.2, where we see 
that the proposed method is robust to the neglected time 
delay, whereas the Bamberger and Isermann approach 
performs erratically.  

 
Figure 1. Simulation results using the proposed robust 
extremum seeking scheme, with neglected RHP-zero.  

 
 Figure 2. Simulation results using the proposed robust 
extremum seeking scheme, with neglected time delay.  
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