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Abstract Overview 

Smart grid technology represents a new way to build and operate energy networks using more and better 

information while including various renewable energy sources. A localized and distributed version of 

smart grids covering relatively small areas is known as microgrid. To achieve more efficient and reliable 

energy supply in a microgrid network, a more flexible and robust management system is needed. This 

study presents a decision-making strategy for a cooperative multi-microgrid system comprised of multiple 

microgrids, which can share energy with each other. The targeted system is formulated as a multi-agent 

system where each microgrid is regarded as a decision-maker, and the decision-making for the entire 

system is developed based on distributed optimization to reduce the computational cost. As an algorithm 

for distributed optimization, the alternating direction method of multipliers (ADMM) is used which has 

been applied to problems in statistics and machine learning. To predict the amounts of renewable energy 

generation and make the optimization problem more realistic, stochastic models of the wind speed and 

solar intensity are developed and incorporated into the decision-making.  
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Introduction

Smart grid represents the next generation energy 

network where information and communication 

technologies (ICT) are used to enable more efficient and 

informed decision-making in energy generation, storage, 

and distribution. Besides the traditional energy sources, it is 

expected to include various renewable energy sources, such 

as wind and solar power, which are intermittent and 

stochastic. A microgrid is a localized and distributed 

version of smart grid that focuses on relatively small areas. 

Generally, a microgrid comprises local generation units for 

renewable energy or conventional energy generator, energy 

storage system such as batteries to store the renewable 

energy, demand response to consumers, and connections to 
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the main grid for energy sale/purchase (Olivares et al., 

2014). 

The multi-agent system (MAS) framework has recently 

been popular in various fields (e.g., microgrid operation, 

systems engineering, robotics, and game theory) to describe 

and mathematically formulate a system where there are 

more than one decision makers, i.e., agents (Olivares et al., 

2014 and Vlassis, 2007). In MAS, multiple agents coexist 

in an environment and make decisions simultaneously while 

having particular interactions with each other. A system of 

multiple coexisting microgrids is called a multi-microgrid 

system (MMGS) and can be formulated as MAS where each 

microgrid represents a decision maker. 



  

 

In this work, a management system of MMGS is 

formulated as MAS, and a decision-making strategy is 

developed based on the alternating direction method of 

multipliers (ADMM), which is a widely applied distributed 

optimization algorithm (Boyd et al., 2011 and Tang and 

Daoutidis, 2018). The performance of distributed 

optimization is assessed by comparing with the centralized 

optimization in terms of the computational cost as well as 

the achieved result. In addition, stochastic models are 

developed and incorporated into the optimization problem 

to handle the intermittent and uncertain characteristics of 

renewable energy generation. Finally, results of the 

decision-making strategy incorporating the stochastic 

models are presented and analyzed. 

System and Problem Description  

Two-Agent Multi-Microgrid System 

The MMGS in this study consists of two microgrids: 

MG1 and MG2. Each of MG1 and MG2 has its own 

renewable energy generation unit, energy storage, 

conventional energy generator, and consumer (see Figure 1). 

For renewable energy generation, MG1 produces wind 

energy using wind turbines, and MG2 produces solar energy 

using solar panels. Both microgrids can purchase energy 

from a common main grid. The most relevant aspect of the 

system is that MG1 and MG2 can exchange energy with 

each other as needed. 

 
Figure 1. The studied MMGS consists of two microgrids 

Decision-Making Problem 

To develop a decision-making strategy of the system, 

an optimization problem has been formulated. Objective 

function is to minimize the summation of overall costs for 

all energy dispatches and turning on/off the conventional 

energy generator. 

MG1 and MG2 make a set of hourly decisions for one-

day operation. Decision variables of each microgrid include: 

(1) a binary variable for turning on/off the conventional 

energy generator, (2) amount of conventional energy to 

generate, (3) amount of generated renewable energy to 

provide to consumers, (4) amount of generated renewable 

energy charged to the energy storage, (5) amount of 

discharged energy from the storage, (6) amount of energy 

to purchase from the main grid, and (7) amount of energy, 

positive or negative, to exchange with the other microgrid. 

Required input variables for each daily operation are: 

(1) hourly profiles of the renewable energy generation from 

wind turbines and solar panels, (2) hourly profiles of the 

energy demand from consumers in MG1 and MG2, (3) an 

upper bound of the total sharing amount between MG1 and 

MG2, and (4) the initial charged level of each energy 

storage. 

Equality constraints include: (1) total energy balance in 

each microgrid including the demand, (2) renewable energy 

balance in each microgrid, and (3) energy sharing (i.e., 

exchange) balance. Inequality constraints include: (4) 

capacity of each storage, (5) limits on energy purchase from 

the main grid, and (6) upper bound on the total sharing 

amount between MG1 and MG2 over a whole day. Note that 

constraints (3) and (5) represents connecting constraints that 

make the decisions of MG1 and MG2 interconnected.  

Optimization Methods  

There are two approaches to solving a decision-making 

problem of MAS: centralized optimization and distributed 

optimization. This study applies the two approaches and 

compares the results in terms of computational cost and 

achieved objective value to verify the benefits and 

shortcomings of distributed optimization. At this point of 

the comparison, uncertainty in the renewable energy 

sources (i.e., wind and solar) is not considered.  

Centralized Optimization Using Method of Multipliers 

In this approach, all decision variables of MG1 and 

MG2 are combined into one variable vector x (i.e., agent), 

and made together as a single combined system. Therefore, 

it becomes a centralized optimization, which is computed 

by a single agent. The decision-making problem is 

formulated as Eq. (1a) and solved in a centralized manner 

by using the method of multipliers (Boyd et al., 2011). It 

solves a dual problem by iterative gradient ascent using the 

augmented Lagrangian (Eq. (1b)). Each iteration to find the 

optimal value comprises a Lagrangian minimization step 

with respect to the primal variable (x) and a dual variable (y) 

update step as shown in Eq. (1c) and Eq. (1d).  

 

minimize 𝑓(𝑥) 

subject to 𝐴𝑥 = 𝑏                  (1a) 

 

𝐿𝜌(𝑥, 𝑦) = 𝑓(𝑥) + 𝑦𝑇(𝐴𝑥 − 𝑏) + (𝜌/2)‖𝐴𝑥 − 𝑏‖2
2    (1b) 

 

𝑥𝑘+1 = argmin
𝑥

𝐿𝜌(𝑥, 𝑦𝑘)                  (1c) 

𝑦𝑘+1 = 𝑦𝑘 + 𝜌(𝐴𝑥𝑘+1 − 𝑏)                 (1d) 

 

where 𝜌 is the penalty parameter working as a step size. 

Distributed Optimization Using Alternating Direction 

Method of Multipliers (ADMM) 

In contrast to the centralized optimization, this 

approach based on ADMM uses two distinct decision 

variable vectors, and uses a distributed optimization 

computed by multiple agents (Boyd et al., 2011). All the 

decision variables for MG1 and MG2 are represented in 



  

vectors x and z, respectively. The decision-making problem 

is formulated in a distributed manner as Eq. (2a) where two 

variables x and z are split in the objective function but 

connected by the constraints. As in method of multipliers, it 

solves the dual problem by iterative gradient ascent using 

the augmented Lagrangian (Eq. (2b)). However, the main 

difference is that the decision variables are split into two 

parts and solved with the respective part of the separable 

objective function. Therefore, the two variables are updated 

based on each minimization step in a sequential (i.e., 

alternating) manner, unlike the combined step in the 

centralized optimization. In other words, each iteration in 

ADMM to find the optimal value comprises two Lagrangian 

minimization steps, each with respect to each primal 

variable (of x and z) and a dual variable (y) update step as 

shown in Eq. (2c), Eq. (2d), and Eq. (2e).  

 

minimize 𝑓(𝑥) + 𝑔(𝑧) 

subject to 𝐴𝑥 + 𝐵𝑧 = 𝑐       (2a) 

 

𝐿𝜌(𝑥, 𝑧, 𝑦) = 𝑓(𝑥) + 𝑔(𝑧) + 𝑦𝑇(𝐴𝑥 + 𝐵𝑧 − 𝑐) 

+(𝜌/2)‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖2
2                        (2b) 

 

𝑥𝑘+1 = argmin
𝑥

𝐿𝜌(𝑥, 𝑧𝑘, 𝑦𝑘)      (2c) 

𝑧𝑘+1 = argmin
𝑧

𝐿𝜌(𝑥𝑘+1, 𝑧, 𝑦𝑘)      (2d) 

𝑦𝑘+1 = 𝑦𝑘 + 𝜌(𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐)     (2e) 

Uncertainty Modeling 

In developing decision-making strategies for a smart 

grid system, prediction of the amount of renewable energy 

generation is crucial and difficult because of its intermittent 

and uncertain nature (Powell et al., 2012 and Shin et al., 

2017). Since wind and solar power have been considered in 

this study, wind speed and solar intensity over a year are 

considered for the uncertainty modeling. Hourly average 

data for the wind speed and solar radiation are gathered 

from the National Wind Technology Center (NWTC) and 

the Solar Radiation Research Laboratory (SRRL) located in 

Colorado, USA (Andreas and Stoffel, 1981 and Jager and 

Andreas, 1996). Using the collected data for the wind speed 

and solar intensity for 10 years from 2008 to 2017, multi-

scale nonstationary stochastic models are developed based 

on several techniques of time-series modeling, regression 

and Markov Chain Monte Carlo (MCMC). The models for 

every month are separately developed by considering the 

variation divided into two types: inter-day and intra-day 

variation as in Shin et al. (2017). Subsequently, the 

decision-making strategy based on ADMM is developed 

considering the uncertainty on wind and solar power 

generation.  

Conclusions  

Microgrid is a localized and distributed version of a 

smart grid focusing on small areas. This study develops a 

decision-making strategy of a cooperative MMGS where 

multiple microgrids coexist. First, the MMGS was 

formulated as MAS. Then the problem was solved by both 

the centralized and distributed optimizations, and the 

distributed optimization showed a lower computational cost 

while achieving the same objective function value. For this 

result, the decision-making algorithm was developed based 

on ADMM. In addition, uncertainty modeling for wind 

speed and solar intensity was implemented to predict the 

amounts of renewable energy generation in order to make 

the decision-making more practical and realistic. However, 

if the decision-making is done independently for each daily 

operation, some day-to-day inconsistencies known as end-

effect can occur, which is undesirable. For the future work, 

to relieve the end-effects and improve the robustness of the 

strategy, value function approximation solved by a 

reinforcement learning technique will be considered. 
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