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Abstract Overview 

This presentation considers the role of machine learning and modern data science in the chemical and 

materials domain. We will discuss the development of data-derived prediction models and the 

elucidation of structure-property relationships that can be used for accelerated discovery, rational design, 

inverse engineering, and the exploration of chemical space. We will showcase our contributions to this 

field and highlight our software tools and methodological advances on proof-of-concept case studies. 
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The process of creating new chemistry and materials is 
increasingly driven by computational modeling and 
simulation, which allow us to characterize compounds of 
interest before pursuing them in the laboratory. However, 
traditional physics-based approaches (such as first-
principles quantum chemistry) tend to be computationally 
demanding, in which case they may not be a practically 
viable option for large-scale screening studies that could 
efficiently explore the vastness of chemical space. 

 

In this presentation, we show how we employ machine 

learning to develop data-derived prediction models that are 

alternatives to physics-based models, and how we utilize 

them in massive-scale hyperscreening studies at a fraction 

of the cost. Aside from conducting such data-driven 

discovery, we also employ data mining techniques to 

develop an understanding of the hidden structure-property 

relationships that determine the behavior of molecules, 

materials, and reactions (see Fig. 1). These insights form 

our foundation for the rational design and inverse 

engineering of novel compounds with tailored properties.  

 
Figure 1. Mathematical setup of the structure-property 

relationship problem. We employ machine learning to 

recover the unknown mapping function f to compute the 

target property p of a given structure, represented in terms 

of descriptors D. 

 

We will provide specific discovery and design 

examples of high-refractive index polymers for lens 

components (see Fig. 2), deep eutectic solvents for 

supercapacitors, and organic semiconductors. In this 

context, we will highlight our work on physics-infused 

machine learning models that seek to improve the 

robustness and range of applicability of purely data-

derived models; on adapting cutting-edge data science 



  
 

 

techniques for chemical applications (e.g., transfer 

learning, active learning, and advanced network 

architectures for deep learning); and on meta-machine 

learning, i.e., to (machine) learn how to apply machine 

learning in the chemical domain. We will also show how 

we use data science techniques to advance, augment, and 

correct traditional molecular modeling and simulation 

methods. 
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Figure 2. (a) Comparison between experimental refractive 

index values and those of a hybrid prediction model 

(partly data-derived, partly physics-based). (b) Z-scores 

from a hypergeometric distribution analysis identifying 

prevalent moiety patterns in the most promising 

candidates from a high-refractive-index polymer screening 

study. The molecular building blocks with large positive 

values are significantly overexpressed in the top 

candidates and thus correlate with desirable performance. 

 
Finally, we will discuss our software ecosystem for 

data-driven in silico research (see Fig. 3) that enables all 
this work, both on the application as well as on the method 
development side. It consists of four loosely connected 
program suites: ChemLG is a generator for compound and 
material candidate libraries that allows us to enumerate 
chemical space (i.e., performing data definition); 
ChemHTPS provides an automated platform for the virtual 
high-throughput screening of these libraries (i.e., 
performing data generation); ChemBDDB offers a database 
and data model template for the massive information 
volumes created by data-intensive projects  (i.e., 

performing data storage); and ChemML is a machine 
learning and informatics toolbox for the validation, 
analysis, mining, and modeling of such data sets (i.e., 
performing data mining). 

 

 
 
Figure 3. Schematic of the ChemEco software ecosystem 
for data-driven in silico research comprised of ChemLG, 

ChemHTPS, ChemBDDB, and ChemML codes. 

 

The notion to utilize modern data science in chemistry 

is so recent that much of the basic infrastructure has not yet 

been developed, or is still in its infancy. The existing tools 

and expertise tend to be in-house, specialized, or otherwise 

unavailable to the community at large. Data science is thus 

in practice beyond the scope and reach of most researchers 

in the field. By contributing this open, general-purpose, 

comprehensive, easy-to-use software ecosystem, we aim to 

chart new paths in this area and help in overcoming this 

situation, filling the prevalent infrastructure gap, and thus 

making data-driven research a viable and widely accessible 

proposition for the community. This includes a 

development platform and testbed for methods (Fig. 4). 
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Figure 4. Network architecture that incorporates the non-

linearity of the Lorentz-Lorenz equation. 
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