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Abstract Overview 

We present an application of deep reinforcement learning (DRL) technology for the problem of tuning 

Proportional-Integral-Derivative (PID) controllers.  The DRL agent adjusts the PID tuning parameters in 

order to minimize the root-mean squared tracking error.  Rather than postulating relevant features for the 

evaluation of the controller state we show that it is only necessary to provide raw values of the manipulated 

variable, controlled variable, and set-point as feedback to the agent. 
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Introduction

 Deep Reinforcement Learning (DRL) has gained 

widespread attention with the spectacular success of Google 

DeepMind’s AlphaGo technology (Silver et al., 2016).  

While Reinforcement Learning theory and applications 

have progressed steadily since the 1990’s (Sutton and Barto, 

2018), the recent employment of Deep Neural Networks for 

function approximation makes it possible for DRL agents to 

extract relevant features from data without supervision 

(Levine, 2017), significantly widening the range of possible 

applications.  While it is clear that DRL agents will not 

replace standard control algorithms, it is only natural to 

consider how this emerging technology may prove useful 

for optimization and control of chemical processes. 

Here we present an application of DRL technology for 

the problem of tuning Proportional-Integral-Derivative 

(PID) controllers (Astrom and Hagglund, 1994).  The DRL 

agent adjusts the PID tuning parameters in order to 

minimize the root-mean squared tracking error.  Rather than 

postulating relevant features for the evaluation of the 

controller state we show that it is only necessary to provide 
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raw values of the manipulated variable, controlled variable, 

and set-point as feedback to the agent. 

Our work differs in two important ways from previous 

efforts to use Reinforcement Learning (RL) to tune PID 

controllers (el Hakim et al., 2013) (Sedighizadeh and 

Rezazadeh, 2008): (1) we use DRL so that we can avoid 

feature engineering, and (2) we compute incremental 

adjustments to the tuning parameters, rather than full 

values, leading to a more robust tuning policy. 

PID Controller Tuning as a Reinforcement Learning 

Problem  

Figure 1 shows a typical single-input, single-output 

control application (heater outlet temperature control) in 

which a PID controller adjusts a manipulated variable (MV) 

(fuel gas flow in Fig. 1) to keep a controlled variable (CV) 

(outlet temperature in Fig. 1) close to its setpoint (SP) 

(desired outlet temperature in Fig. 1).  A PID typical 

controller measures the tracking error 𝑒(𝑡), defined as the 



  

 

 

difference between SP and CV, and applies a correction to 

the MV that depends on three tuning factors: a proportional 

gain (𝐾𝐶), a reset time (𝜏𝐼), and a derivative time (𝜏𝐷). 

 

𝑚𝑣𝑡 = 𝐾𝑐 [𝑒𝑡 +  (∆𝑡/𝜏𝐼) ∑ 𝑒𝑡−𝑗

∞

𝑗=0

+ (𝜏𝐷/∆𝑡)(𝑒𝑡 − 𝑒𝑡−1)]       (1) 

 

Here ∆𝑡 is the sample interval. The values of the three 

tuning factors  𝐾𝐶 , 𝜏𝐼, and 𝜏𝐷 must be set correctly for any 

given process in order to achieve good PID control 

performance (Astrom and Hagglund, 1994), and they must 

be periodically updated as the process changes over time. 

 

In this work, we viewed the PID controller tuning task 

as a reinforcement learning (RL) problem where an agent 

interacts with a PID control environment in discrete time 

steps. At each time step 𝑡 the agent receives an observation 

𝑠𝑡, takes an action 𝑎𝑡 and receives a scalar reward 𝑟(𝑠𝑡 , 𝑎𝑡). 

An agent’s behavior is defined by a policy, 𝜋, which maps 

states to the actions, 𝜋: 𝑆 →  𝐴. The action-value function 

Qπ(𝑠𝑡 , 𝑎𝑡) is the expected future accumulated reward after 

taking an action 𝑎𝑡 in state 𝑠𝑡 and then following the policy 

𝜋  afterwards (Sutton and Barto, 2018): 

 

Qπ(𝑠𝑡, 𝑎𝑡) = E [𝑟(st, at) + ∑ γir(𝑠𝑡+𝑖 , 𝜋(𝑠𝑡+𝑖))

∞

i=1

],        (2) 

 

where γ is a discounting factor γ ∈ [0, 1]. The goal of 

reinforcement learning is to learn a policy which maximizes 

Qπ(𝑠𝑡 , 𝑎𝑡) for any 𝑠𝑡 and 𝑎𝑡. In the subsequent section we 

will discuss how we define state, action, and reward for the 

DRL adaptive PID tuning as well as briefly describe our 

DRL training process. 

Training a Reinforcement Learning Agent for PID 

Tuning  

In this application, after the DRL agent takes an action  

𝑎𝑡 to adjust the PID tuning parameters, we let the PID 

control execute for 200 samples before running the DRL 

agent again for the next adjustment 𝑎𝑡+1.  When it is time 

to run, the state 𝑠𝑡 that we pass to the agent is a collection 

of the 200 MV, CV, SP values since the previous 

adjustment, denoted as mv𝒕, cv𝒕, sp𝒕, respectively. In 

addition, we also include the current PID tuning parameters 

[𝐾𝐶 𝑡
, 𝜏𝐼 𝑡

, 𝜏𝐷𝑡
] in the state vector 𝑠𝑡: 

 

               𝑠𝑡 = [mv𝒕, cv𝒕, sp𝒕, 𝐾𝐶𝑡
, 𝜏𝐼𝑡, 𝜏𝐷𝑡]              (3) 

 

Next, we define the action 𝑎𝑡 taken by DRL agent as a 

set of multiplication factors to apply to the current PID 

tuning parameters. More specifically, 𝑎𝑡 = [𝑎𝑡
1, 𝑎𝑡

2, 𝑎𝑡
3] with 

𝑎𝑡
1, 𝑎𝑡

2, 𝑎𝑡
3 ∈ [−1, 1] and  

 
𝐾𝐶 𝑡+1

= 𝐾𝐶𝑡
(1 + 0.5 ∗ 𝑎𝑡

1)                            (4)                          

𝜏𝐼𝑡+1 = 𝜏𝐼𝑡
(1 + 0.5 ∗ 𝑎𝑡

2) 

𝜏𝐷𝑡+1 = 𝜏𝐷𝑡(1 + 0.5 ∗ 𝑎𝑡
3) 

 

Let e𝒕 denote the 200 tracking error measurements taken 

between time steps 𝑡 − 1 and 𝑡. We define the reward as the 

negative of the root-mean squared tracking error plus a 

penalty on the actions taken (promote efficient tuning): 

 

𝑟(𝑠𝑡 , 𝑎𝑡) = −( ‖e𝒕‖2 +  0.01 ∗ ‖𝑎𝑡‖1)                   (5) 

 

Using our definition of state, action, and reward, we 

proceed to train a deep reinforcement learning agent on a 

simulated PID controller, with randomly generated setpoint 

changes, using the deep deterministic policy gradient 

(DDPG) algorithm (Lillicrap et at., 2015). DDPG is an 

actor-critic method that simultaneously learns both the 

action-value function and the policy function.  Here both 

functions are approximated by a deep neural network. An 

illustration of our neural network architecture is shown in 

Figure 2. The first part of our architecture consists of 

multiple layers of convolutional neural networks (CNN) 

that are designed for efficient feature extraction from the 

raw sensor measurements. The second part of the 

architecture are two diverging sets of fully-connected layers 

that represent the policy function (with action output in Fig. 

2) and action-value function (with value output in Fig. 2). 

Note that the first part of CNNs are shared between policy 

network and action-value network. This design choice is 

based on our observation that it is possible for a common 

set of features extracted from raw data using CNN to 

sufficiently determine both action-value function and policy 

function. We trained the entire network from scratch end-

to-end without feature engineering. 

 
 

Figure 1.  An example of PID controller controlling a 

fire heater 

 



  

 

We successfully trained DRL PID tuning agents to tune 

PID controllers for two different types of process dynamics: 

a second-order deadtime process (SODP), representative of 

many stable processes such as the heater outlet temperature 

control problem in Figure 1, and a pure integrating process 

(IP), which is representative of many tank level control 

problems.  Training converged for the SODP example in 

roughly 500k iterations (encounters with the environment), 

and for the IP example in roughly 400k iterations. 

A snapshot of a trained DRL agent tuning the SODP is 

shown in Figure 3. From Fig. 3(a)-(b), we can see that our 

trained DRL agent is able to tune the PID so that the CV 

tracks the SP closely. To quantitatively evaluate DRL  

agents’ performance, we calculated the optimum constant 

tuning parameters for this process by direct dynamic 

optimation and obtained 𝐾𝑐∗ = 0.6129, 𝜏𝐼
∗ = 10.3614, 

and 𝜏𝐷
∗ = 7.0618. As can be seen from Fig. 3(c)-(e), our 

DRL agents’ policy found parameters near these, but 

chooses to continuously change them.  By making 

continuous changes it functions effectively as a nonlinear 

controller, and so comparisons with the optimal constant 

tuning parameters are difficult to make.  But it is clear from 

the good tracking performance that it is doing a respectable 

job of choosing tuning parameters. A snapshot of our 

trained agent in action on the IP process is shown in Figure 

4. Again, seen from Fig. 4(a)-(b), our trained DRL agent is 

able to tune the PID so that the CV tracks the SP very 

closely. The optimal tuning parameters for this case are 

calculated as 𝐾𝐶
∗ = 0.99, 𝜏𝐼

∗ = 1000, and 𝜏𝐷
∗ = 0. From 

Fig. 4(c)-(e), we see that our DRL agent correctly set the 𝐾𝐶  

and 𝜏𝐷 terms while 𝜏𝐼 term is set to an unexpected value.  

Again, however, the small tracking error is evidence that 

these are acceptable values for the tuning parameters. 

In summary, we have applied deep reinforcement 

learning to the problem of tuning PID controllers. We show 

that rather than postulating relevant features for the 

evaluation of the controller state as others have done, it is 

only necessary to provide raw values of the manipulated 

variable, controlled variable, and set-point as feedback to 

the reinforcement learning agent.  Our future plans include 

evaluating the merits of continuously adjusting the PID 

tuning parameters, and development of a master PID tuning 

policy that can handle a wide variety of process dynamics 

and disturbances. 

References 

Astrom, K., Hagglund, T.,(1994), “PID Controllers: Theory,  

Design, and Tuning”, ISA. 

el Hakim, A., Hindersah H., Rijanto, E., (2013), “Application of 

Reinforcement Learning on Self-Tuning PID Controller 

for Soccer Robot Multi-Agent System,” 2013 Joint 

International Conference on Rural Communication 

Technology and Electric-Vehicle Technology 

(rICT&IceV-T), November 2-28, Bandung-Bali, 

Indonesia. 

Levine, S., (2017). Deep Reinforcement Learning, Berkeley  

CS294-112. 

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, 

Y., Silver, D., & Wierstra, D. (2015). Continuous 

control with deep reinforcement learning. CoRR, 

abs/1509.02971. 

Sedighizadeh, M., Rezazadeh, A., (2008), “Adaptive PID  

Controller based on Reinforcement Learning for Wind  

Turbine Control,” World Academy of Science,  

Engineering and Technology, 37, 257-262. 

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Van den  

Driessche, G., Schrittwieser, J., Antonoglou, I.,  

Panneershelvam, V., Lancot, M., Dieleman, S., Grewe,  

D., Nham, J., Kalchbrenner, N., Sutskever, I. Lillicrap, 

T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, 

D., (2016). Mastering the game of Go with deep neural 

networks and tree search, Nature, 529, 484-489. 

Sutton, R., Barto, A., (2018). Reinforcement Learning: An  

Introduction, Second Edition, MIT Press. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.  Deep neural network architecture for policy 

and action-value function. 

 



  

 

 

 

         
       (a) CV(clue) and SP(red)                                 (b) MV                                                 (c) 𝐾𝐶  

   
                                                                (d) 𝜏𝐼                                                    (e) 𝜏𝐷 

 

Figure 3.  Trained DRL agent tuning a second-order dead time process (SODP) [
0.3𝑒−10𝑠

(1+5𝑠)(1+5𝑠)
]; (a) CV (blue) and SP 

(red); (b) MV; (c)-(e)𝐾𝐶 , 𝜏𝐼, 𝜏𝐷 value determined by a trained DRL agent at each time-step. 

        
       (a) CV(clue) and SP(red)                                 (b) MV                                                 (c) 𝐾𝐶  

   
      (d) 𝜏𝐼                                                      (e) 𝜏𝐷 

 

Figure 4.  Trained DRL agent tuning an integrating process (IP) [
1

𝑠
]; (a) CV (blue) and SP (red); (b) MV; (c)-(e)𝐾𝐶 , 

𝜏𝐼, 𝜏𝐷 value determined by a trained DRL agent at each time-step. 


