

DEEP REINFORCEMENT LEARNING FOR PID

CONTROLLER TUNING

Kuang-Hung Liu1*, Thomas A. Badgwell1 and Michael H. Kovalski2
1ExxonMobil Research & Engineering
2ExxonMobil Information Technology

Clinton, NJ 08809

Abstract Overview

We present an application of deep reinforcement learning (DRL) technology for the problem of tuning

Proportional-Integral-Derivative (PID) controllers. The DRL agent adjusts the PID tuning parameters in

order to minimize the root-mean squared tracking error. Rather than postulating relevant features for the

evaluation of the controller state we show that it is only necessary to provide raw values of the manipulated

variable, controlled variable, and set-point as feedback to the agent.

Keywords

Deep reinforcement learning, PID controller, Actor-critic, Continuous control, Deep neural network,

Convolutional neural network.

Introduction

 Deep Reinforcement Learning (DRL) has gained

widespread attention with the spectacular success of Google

DeepMind’s AlphaGo technology (Silver et al., 2016).

While Reinforcement Learning theory and applications

have progressed steadily since the 1990’s (Sutton and Barto,

2018), the recent employment of Deep Neural Networks for

function approximation makes it possible for DRL agents to

extract relevant features from data without supervision

(Levine, 2017), significantly widening the range of possible

applications. While it is clear that DRL agents will not

replace standard control algorithms, it is only natural to

consider how this emerging technology may prove useful

for optimization and control of chemical processes.

Here we present an application of DRL technology for

the problem of tuning Proportional-Integral-Derivative

(PID) controllers (Astrom and Hagglund, 1994). The DRL

agent adjusts the PID tuning parameters in order to

minimize the root-mean squared tracking error. Rather than

postulating relevant features for the evaluation of the

controller state we show that it is only necessary to provide

* To whom all correspondence should be addressed

raw values of the manipulated variable, controlled variable,

and set-point as feedback to the agent.

Our work differs in two important ways from previous

efforts to use Reinforcement Learning (RL) to tune PID

controllers (el Hakim et al., 2013) (Sedighizadeh and

Rezazadeh, 2008): (1) we use DRL so that we can avoid

feature engineering, and (2) we compute incremental

adjustments to the tuning parameters, rather than full

values, leading to a more robust tuning policy.

PID Controller Tuning as a Reinforcement Learning

Problem

Figure 1 shows a typical single-input, single-output

control application (heater outlet temperature control) in

which a PID controller adjusts a manipulated variable (MV)

(fuel gas flow in Fig. 1) to keep a controlled variable (CV)

(outlet temperature in Fig. 1) close to its setpoint (SP)

(desired outlet temperature in Fig. 1). A PID typical

controller measures the tracking error 𝑒(𝑡), defined as the

difference between SP and CV, and applies a correction to

the MV that depends on three tuning factors: a proportional

gain (𝐾𝐶), a reset time (𝜏𝐼), and a derivative time (𝜏𝐷).

𝑚𝑣𝑡 = 𝐾𝑐 [𝑒𝑡 + (∆𝑡/𝜏𝐼) ∑ 𝑒𝑡−𝑗

∞

𝑗=0

+ (𝜏𝐷/∆𝑡)(𝑒𝑡 − 𝑒𝑡−1)] (1)

Here ∆𝑡 is the sample interval. The values of the three

tuning factors 𝐾𝐶 , 𝜏𝐼, and 𝜏𝐷 must be set correctly for any

given process in order to achieve good PID control

performance (Astrom and Hagglund, 1994), and they must

be periodically updated as the process changes over time.

In this work, we viewed the PID controller tuning task

as a reinforcement learning (RL) problem where an agent

interacts with a PID control environment in discrete time

steps. At each time step 𝑡 the agent receives an observation

𝑠𝑡, takes an action 𝑎𝑡 and receives a scalar reward 𝑟(𝑠𝑡 , 𝑎𝑡).

An agent’s behavior is defined by a policy, 𝜋, which maps

states to the actions, 𝜋: 𝑆 → 𝐴. The action-value function

Qπ(𝑠𝑡 , 𝑎𝑡) is the expected future accumulated reward after

taking an action 𝑎𝑡 in state 𝑠𝑡 and then following the policy

𝜋 afterwards (Sutton and Barto, 2018):

Qπ(𝑠𝑡, 𝑎𝑡) = E [𝑟(st, at) + ∑ γir(𝑠𝑡+𝑖 , 𝜋(𝑠𝑡+𝑖))

∞

i=1

], (2)

where γ is a discounting factor γ ∈ [0, 1]. The goal of

reinforcement learning is to learn a policy which maximizes

Qπ(𝑠𝑡 , 𝑎𝑡) for any 𝑠𝑡 and 𝑎𝑡. In the subsequent section we

will discuss how we define state, action, and reward for the

DRL adaptive PID tuning as well as briefly describe our

DRL training process.

Training a Reinforcement Learning Agent for PID

Tuning

In this application, after the DRL agent takes an action

𝑎𝑡 to adjust the PID tuning parameters, we let the PID

control execute for 200 samples before running the DRL

agent again for the next adjustment 𝑎𝑡+1. When it is time

to run, the state 𝑠𝑡 that we pass to the agent is a collection

of the 200 MV, CV, SP values since the previous

adjustment, denoted as mv𝒕, cv𝒕, sp𝒕, respectively. In

addition, we also include the current PID tuning parameters

[𝐾𝐶 𝑡
, 𝜏𝐼 𝑡

, 𝜏𝐷𝑡
] in the state vector 𝑠𝑡:

 𝑠𝑡 = [mv𝒕, cv𝒕, sp𝒕, 𝐾𝐶𝑡
, 𝜏𝐼𝑡, 𝜏𝐷𝑡] (3)

Next, we define the action 𝑎𝑡 taken by DRL agent as a

set of multiplication factors to apply to the current PID

tuning parameters. More specifically, 𝑎𝑡 = [𝑎𝑡
1, 𝑎𝑡

2, 𝑎𝑡
3] with

𝑎𝑡
1, 𝑎𝑡

2, 𝑎𝑡
3 ∈ [−1, 1] and

𝐾𝐶 𝑡+1

= 𝐾𝐶𝑡
(1 + 0.5 ∗ 𝑎𝑡

1) (4)

𝜏𝐼𝑡+1 = 𝜏𝐼𝑡
(1 + 0.5 ∗ 𝑎𝑡

2)

𝜏𝐷𝑡+1 = 𝜏𝐷𝑡(1 + 0.5 ∗ 𝑎𝑡
3)

Let e𝒕 denote the 200 tracking error measurements taken

between time steps 𝑡 − 1 and 𝑡. We define the reward as the

negative of the root-mean squared tracking error plus a

penalty on the actions taken (promote efficient tuning):

𝑟(𝑠𝑡 , 𝑎𝑡) = −(‖e𝒕‖2 + 0.01 ∗ ‖𝑎𝑡‖1) (5)

Using our definition of state, action, and reward, we

proceed to train a deep reinforcement learning agent on a

simulated PID controller, with randomly generated setpoint

changes, using the deep deterministic policy gradient

(DDPG) algorithm (Lillicrap et at., 2015). DDPG is an

actor-critic method that simultaneously learns both the

action-value function and the policy function. Here both

functions are approximated by a deep neural network. An

illustration of our neural network architecture is shown in

Figure 2. The first part of our architecture consists of

multiple layers of convolutional neural networks (CNN)

that are designed for efficient feature extraction from the

raw sensor measurements. The second part of the

architecture are two diverging sets of fully-connected layers

that represent the policy function (with action output in Fig.

2) and action-value function (with value output in Fig. 2).

Note that the first part of CNNs are shared between policy

network and action-value network. This design choice is

based on our observation that it is possible for a common

set of features extracted from raw data using CNN to

sufficiently determine both action-value function and policy

function. We trained the entire network from scratch end-

to-end without feature engineering.

Figure 1. An example of PID controller controlling a

fire heater

We successfully trained DRL PID tuning agents to tune

PID controllers for two different types of process dynamics:

a second-order deadtime process (SODP), representative of

many stable processes such as the heater outlet temperature

control problem in Figure 1, and a pure integrating process

(IP), which is representative of many tank level control

problems. Training converged for the SODP example in

roughly 500k iterations (encounters with the environment),

and for the IP example in roughly 400k iterations.

A snapshot of a trained DRL agent tuning the SODP is

shown in Figure 3. From Fig. 3(a)-(b), we can see that our

trained DRL agent is able to tune the PID so that the CV

tracks the SP closely. To quantitatively evaluate DRL

agents’ performance, we calculated the optimum constant

tuning parameters for this process by direct dynamic

optimation and obtained 𝐾𝑐∗ = 0.6129, 𝜏𝐼
∗ = 10.3614,

and 𝜏𝐷
∗ = 7.0618. As can be seen from Fig. 3(c)-(e), our

DRL agents’ policy found parameters near these, but

chooses to continuously change them. By making

continuous changes it functions effectively as a nonlinear

controller, and so comparisons with the optimal constant

tuning parameters are difficult to make. But it is clear from

the good tracking performance that it is doing a respectable

job of choosing tuning parameters. A snapshot of our

trained agent in action on the IP process is shown in Figure

4. Again, seen from Fig. 4(a)-(b), our trained DRL agent is

able to tune the PID so that the CV tracks the SP very

closely. The optimal tuning parameters for this case are

calculated as 𝐾𝐶
∗ = 0.99, 𝜏𝐼

∗ = 1000, and 𝜏𝐷
∗ = 0. From

Fig. 4(c)-(e), we see that our DRL agent correctly set the 𝐾𝐶

and 𝜏𝐷 terms while 𝜏𝐼 term is set to an unexpected value.

Again, however, the small tracking error is evidence that

these are acceptable values for the tuning parameters.

In summary, we have applied deep reinforcement

learning to the problem of tuning PID controllers. We show

that rather than postulating relevant features for the

evaluation of the controller state as others have done, it is

only necessary to provide raw values of the manipulated

variable, controlled variable, and set-point as feedback to

the reinforcement learning agent. Our future plans include

evaluating the merits of continuously adjusting the PID

tuning parameters, and development of a master PID tuning

policy that can handle a wide variety of process dynamics

and disturbances.

References

Astrom, K., Hagglund, T.,(1994), “PID Controllers: Theory,

Design, and Tuning”, ISA.

el Hakim, A., Hindersah H., Rijanto, E., (2013), “Application of

Reinforcement Learning on Self-Tuning PID Controller

for Soccer Robot Multi-Agent System,” 2013 Joint

International Conference on Rural Communication

Technology and Electric-Vehicle Technology

(rICT&IceV-T), November 2-28, Bandung-Bali,

Indonesia.

Levine, S., (2017). Deep Reinforcement Learning, Berkeley

CS294-112.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa,

Y., Silver, D., & Wierstra, D. (2015). Continuous

control with deep reinforcement learning. CoRR,

abs/1509.02971.

Sedighizadeh, M., Rezazadeh, A., (2008), “Adaptive PID

Controller based on Reinforcement Learning for Wind

Turbine Control,” World Academy of Science,

Engineering and Technology, 37, 257-262.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Van den

Driessche, G., Schrittwieser, J., Antonoglou, I.,

Panneershelvam, V., Lancot, M., Dieleman, S., Grewe,

D., Nham, J., Kalchbrenner, N., Sutskever, I. Lillicrap,

T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis,

D., (2016). Mastering the game of Go with deep neural

networks and tree search, Nature, 529, 484-489.

Sutton, R., Barto, A., (2018). Reinforcement Learning: An

Introduction, Second Edition, MIT Press.

Figure 2. Deep neural network architecture for policy

and action-value function.

 (a) CV(clue) and SP(red) (b) MV (c) 𝐾𝐶

 (d) 𝜏𝐼 (e) 𝜏𝐷

Figure 3. Trained DRL agent tuning a second-order dead time process (SODP) [
0.3𝑒−10𝑠

(1+5𝑠)(1+5𝑠)
]; (a) CV (blue) and SP

(red); (b) MV; (c)-(e)𝐾𝐶 , 𝜏𝐼, 𝜏𝐷 value determined by a trained DRL agent at each time-step.

 (a) CV(clue) and SP(red) (b) MV (c) 𝐾𝐶

 (d) 𝜏𝐼 (e) 𝜏𝐷

Figure 4. Trained DRL agent tuning an integrating process (IP) [
1

𝑠
]; (a) CV (blue) and SP (red); (b) MV; (c)-(e)𝐾𝐶 ,

𝜏𝐼, 𝜏𝐷 value determined by a trained DRL agent at each time-step.

