
  

   

A STUDY ON DEEP AUTOENCODER BASED FAULT DETECTION IN 

TENNESSEE EASTMAN PROCESS 
Zhongying Xiao1*, Arthur Kordon2 and Subrata Sen1 

1. Georgia Pacific LLC, Atlanta, GA 30303 

2. Kordon Consulting, Fort Lauderdale, Florida 33308 

Abstract Overview 

Data-driven modeling has been considered as an attractive approach for fault detection in chemical processes.   Of 

special interest to industry are methods that represent nonlinear phenomena and detect complex faults. The growing 

area of deep learning offers new opportunities to fill this gap. In this paper, a semi-supervised deep learning method 

- deep autoencoder (DAE) for fault detection in Tennessee Eastman Process (TEP) is proposed. The TEP process 

is a simulated benchmark for evaluating process control and monitoring method. The performance of the proposed 

method is evaluated and compared with Principal Component Analysis (PCA). The experimental results 

demonstrate that the proposed optimized five-layers DAE model for fault detection outperforms the standard PCA. 

Of special importance to real-world applications is its capability for automatic variable selection. In comparison to 

PCA it demonstrated higher prediction accuracy for most of the generated faults. Deep autoencoder has the 

potential to become an excellent approach for process monitoring and fault detection in chemical processes.  
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Introduction

       Data-driven process monitoring, and fault detection is 

becoming one of the most active field in chemical process 

control(Chiang, L. , Russell, E. , Braatz, 2002). Among 

them, multivariate statistical methods, such as principal 

component analysis (PCA), partial least squares (PLS), and 

Fisher discriminant analysis (FDA) have been extensively 

studied for fault detection (Yin, Ding, Haghani, Hao, & 

Zhang, 2012).  Most of these methods, however, are limited 

by the assumption that fault data could be distinguished 

with linear transformations.  

Another class of fault detection methods is based on 

non-linearity of features in data. For instance, Support 

Vector Machines (SVM) were applied to fault detection in 

Tennessee Eastman Process (Chiang, Kotanchek, & 

Kordon, 2004). They can capture nonlinear features 

embedded in the data and detect some challenging faults if 

the model structure is properly designed. 

Despite of the progress of these two categories of data-

driven methods, fault detection is still far from being widely 

used in industrial applications due to two major issues. First, 

these methods often require significant amount of domain 

expertise for variable selection and model validation. 

Second, the imbalance between normal and fault data makes 

model development process a real challenge.  
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Recently deep learning methods have shown significant 

progress in its capabilities and has been applied  in the broad 

application areas of image and natural language processing 

(Goodfellow, Bengio, & Courville, 2016). The key 

advantage of this method is that it automatically discovers 

features with gradually increasing complexity. Recently, 

there is a growing interest in exploring deep learning for 

fault detection and diagnosis of chemical processes. A deep 

convolutional neural network (CNN) model was proposed 

for diagnosing the faults on the TE process(Wu & Zhao, 

2018). However, this method still required tedious variable 

selection and models with very complex architecture, which 

could be a challenge in real-time process monitoring. 

This paper proposes a deep learning neural network 

structure, called Deep Autoencoder (DAE) algorithm, to 

detect faults without tedious feature selection. The proposed 

DAE framework is trained based on time series data in 

normal process condition without manual variable 

selection. The paper demonstrates the model performance 

of the DAE through testing it for detecting different types 

of faults in Tennessee Eastman Process (TEP). To compare 

DAE with traditional statistical models, PCA method is 

used as a benchmark method.  

 

 



  

 

Deep Autoencoder 

      Autoencoder is a type of neural network which is 

adopted to transfer significant information of its input to its 

output. Historically, autoencoders have been used to  

denoise signals, extract features and reduce dimensionality 

(Goodfellow et al., 2016). As an unsupervised learning 

method, DAE consists of three components: an input layer, 

single or multiple hidden layers, and an output layer. At the 

middle of the architecture is a bottleneck layer where the 

information of data is most concentrated and represented.  

The parameters are optimized via backpropagation to 

minimize the loss function. In this paper, Adaptive Moment 

Estimation (Adam) gradient descent optimization algorithm 

is used for optimization. 

 

Tennessee Eastman Process 

       TEP model is a realistic simulation program of a 

chemical plant which is recognized as a benchmark for 

process control and fault detection studies. The process is 

described in (Downs & Fogel, 1993) and the MATLAB 

code for process simulation is available over the website 

(https://depts.washington.edu/control/LARRY/TE/downlo

ad.html). 

      To investigate the ability of DAE for fault detection in 

this chemical process, the TEP simulator was used to 

generate three classes of faulty data, which correspond to 

TEP specification as: Faults 4 (step change in reactor 

cooling water inlet temperature), Fault 5 (step change in 

condenser cooling water inlet temperature), and Fault 11 

(random variation in reactor cooling water inlet 

temperature). For each faulty case, two sets of data were 

generated. The training data containing only normal 

operations data were used to build the models and the test 

data containing both normal and faulty operations data were 

used for model validation. Both the training and test data 

contain 960 observations. In test data, the first 160 

observations were based on normal operation and the 

corresponding faults occurred after the 161st observation. 

Each dataset contains 52 process variables. 

 

Results and Discussion 

 

DAE Model Architecture  
To find a proper architecture, we have tuned several 

models with various number of layers, neurons, and 

different activation functions with the best performance of 

Parametric Rectified Linear Units (PReLU).  

With mean squared error (MSE) as loss function, model 

performance was evaluated by changing number of layers 

and number of moving windows. The optimized 

architecture has 5 neural layers and slide window with 3 

data points, resulting in 156 neurons at the input layer. This 

architecture generated an excellent model with very low 

training and test errors, shown in Figure 1. As a result, this 

DAE structure was selected to train and test the explored 

datasets.  

 
Figure 1. Optimized DAE Architecture and Model Training 

Process 

 

Automatic Variable Selection 

      Unlike other machine learning methods, the explored 

deep autoencoder does not need additional variable 

selection step based on domain knowledge or statistical 

methods. Deep autoencoder was trained by normal 

operation scenario and its output was trying to preserve the 

information of the input, by minimizing the reconstruction 

error during model training. Variable-wise reconstruction 

errors at the output layer are also minimized in normal 

operation scenarios. In a faulty process, variables leading to 

or affected by faults would show huge differences 

compared with normal scenarios. When trained DAE model 

was mapped into data with faulty scenarios, these highly 

related variables would show large reconstruction errors 

relative to the other unrelated variables. 

       
Figure 2. Automatic Variable Selection of Fault 11 

 

      An example of automatic variable selection for Fault 11 

is shown in Figure 2. The reconstruction errors of all input 

variables for Fault 11 is plotted in Figure 2(a). Clearly, two 

spikes of high reconstruction errors are displayed for 

Variable 9 (Reactor temperature) and Variable 51 (Reactor 

cooling water flow), while the other variables have 

relatively small reconstruction errors. The signal of these 

two variables demonstrated significant changes after Fault 

11 has occurred. Trained DAE cannot capture enough 

features from Variable 51 and the predicted values (red dash 

line) have huge differences with actual values (blue solid 

line) after Fault 11 was injected, resulting in a big 

reconstruction error for Variable 51 (Figure 2(b)). The 

results have been validated by published reference (Chiang 

et al., 2004). Automatic variable selection, based on 

reconstruction errors, is a major advantage of DAE 
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compared with the other methods for fault detection. The 

selected important variables with DAE model give a very 

useful information for root-cause analysis of the faults.   

 

Higher Prediction Accuracy 

      Another advantage of DAE is the non-linear 

relationships between predictors and outcome represented 

by this method. As a result, it is assumed that the DAE can 

detect differences between normal and fault scenarios with 

much higher accuracy than corresponding linear 

approaches. The results from a performance comparison 

between DAE and PCA for three selected faults (Fault 4, 5, 

and 11) are given in this section. The full paper will include 

the results for 15 TEP faults out of the total 21 faults. Based 

on PCA, Hotelling’s T2 and Squared Prediction Error (SPE) 

were calculated as benchmarks for fault detection. With the 

same training and test dataset, the accuracy of fault 

detection of the DAE with the optimized architecture is 

evaluated. Table 1 shows the fault detection rate (FDR) of 

the three different methods. Among the methods tested, 

DAE generated better results with much higher FDR.  

Table 1. FDR of The Three Methods 

Faults T2           SPE           DAE 

     Fault 4 18.1%    99.8%        99.8% 

     Fault 5 26.6%    31.0%        100.0% 

     Fault 11                                   33.1%    77.0%        96.6% 

 

      In Figure 3, three methods were utilized to detect Fault 

5.  Both Hotelling’s T2 and SPE can only detect errors at 

early stages and their statistic became similar with normal 

scenarios at later stages after sample 350-400. Their FDRs 

are 26.6% and 31.0%, respectively. With DAE, however, 

we can conduct much simpler and more accurate process 

monitoring for Fault 5. Due to non-linear transformation of 

deep neural network, DAE can preserve more detailed 

features from data and detect derivations from trained data 

with higher sensitivity when fault occurs. For Fault 5, the 

misclassification rate is 0. 

  

Conclusions 

      An important branch of deep learning neural networks - 

deep autoencoder has been studied for fault detection in 

Tennessee Eastman Process benchmark. The performance 

of an optimized five-layers DAE model for fault detection 

of TEP-generated faults is compared with an established 

linear method, such as PCA. A big advantage of the 

proposed DAE is the automatic variable selection it 

provides, based on reconstruction errors. The important 

variables, selected by DAE algorithm, is a vital information 

for root-cause analysis of the faults by engineers and data 

analysts.  Compared with linear PCA method, nonlinear 

transformation of features embedded in the dataset by DAE 

can capture more useful information when fault occurs, 

resulting in a higher fault detection rate. The higher rates 

have been demonstrated for most of the explored faults. The 

next step will be focusing on designing a proper DAE 

architecture for  real-world applications.  

 

 
    Figure 3. Process Monitoring with Hotelling’s T2, SPE 

and DAE in case of Fault 5 

 

 

Acknowledgments 

      Sincere acknowledgements go to Dr. N. Lawrence 

Ricker in making the dataset available for research and 

Shakir Ali with meaningful discussion of TEP dataset. The 

authors gratefully acknowledge support from Georgia 

Pacific LLC. 

 

References 

Chiang, L. , Russell, E. , Braatz, R. (2002). Fault Detection 

and Diagnosis in Industrial Systems. In Springer-

Verlag. 

Chiang, L. H., Kotanchek, M. E., & Kordon, A. K. (2004). 

Fault diagnosis based on Fisher discriminant 

analysis and support vector machines. Computers 

and Chemical Engineering. 

https://doi.org/10.1016/j.compchemeng.2003.10.002 

Downs, J. J., & Fogel, E. (1993). A plant-wide industrial 

process control problem. 17(3), 245–255. 

https://doi.org/10.1016/0098-1354(93)80018-I 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep 

Learning. MIT Press. 

Wu, H., & Zhao, J. (2018). Deep convolutional neural 

network model based chemical process fault 

diagnosis. Computers and Chemical Engineering, 

115, 185–197. 

https://doi.org/10.1016/j.compchemeng.2018.04.009 

Yin, S., Ding, S. X., Haghani, A., Hao, H., & Zhang, P. 

(2012). A comparison study of basic data-driven 

fault diagnosis and process monitoring methods on 

the benchmark Tennessee Eastman process. Journal 

of Process Control, 22(9), 1567–1581. 

https://doi.org/10.1016/j.jprocont.2012.06.009 

 


