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Abstract Overview 

Learning-based control can create unprecedented opportunities for control of non-equilibrium plasmas 
for treatment of complex substrates in applications such as plasma medicine and plasma catalysis. This 
work discusses two learning-based control strategies, namely learning-based robust nonlinear predictive 
control using Gaussian processes and sim-to-real transfer reinforcement learning, for control of the 
thermal effects of atmospheric-pressure plasma jets.  
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Non-equilibrium plasmas (NEPs) are weakly ionized 
gases typically generated in ambient conditions via the 
application of a modulated electric field to inert gases such 
as argon and helium. NEPs have recently gained 
increasing attention for treatment of heat and pressure 
sensitive (bio)materials in surface etching/functionalize-
tion, environmental, and biomedical applications (Stoffels 
et al., 2008; Neyts et al., 2015).  Some of the main 
challenges in process control of NEP applications arise 
from their inherent complexity and variability (Gidon et 
al., 2018; 2019). Firstly, the dynamics of NEPs are highly 
nonlinear and spatio-temporally distributed. NEP 
dynamics are challenging to model using first principles, 
and the resulting models are computationally prohibitive 
for real-time control applications. Secondly, the treatment 
effects of NEPs on complex surfaces, e.g., in plasma 
catalysis or plasma medicine, are currently poorly 
understood. And, thirdly, NEPs generally exhibit 
significant run-to-run variations and time-varying 

dynamics, whereby the NEP treatments carried out under 
identical conditions can yield vastly different outcomes.  

 
This work discusses the unprecedented opportunities 

that learning-based control can create for feedback control 
of NEPs for treatment of complex substrates (Mesbah and 
Graves, 2019). We demonstrate the effectiveness of two 
learning-based control strategies, namely learning-based 
nonlinear predictive control and reinforcement learning, 
for control of the thermal effects of a class of NEP devices 
on substrates with non-uniform electrical and thermal 
properties.  

Learning-Based Robust Nonlinear Predictive Control 
with State-Dependent Noise  

We present a learning-based robust model predictive 
control (LB-RMPC) strategy for offset-free tracking of 
nonlinear systems under uncertainty. The problem setup 
considered here consists of a linear dynamic model with a 



  
 
nonlinear additive state-dependent noise, which is 
described using Gaussian process (GP) regression. GP 
regression allows for obtaining state-dependent 
uncertainty bounds. The GP model is trained online to 
eliminate the plant-model mismatch and reduce the system 
uncertainty, in particular in view of the time-varying 
characteristics of the target substrate.  

 
We demonstrate the proposed LB-RMPC strategy on 

an atmospheric-pressure plasma jet (APPJs) with 
prototypical applications in plasma medicine and materials 
processing. The real-time control experiments indicate that 
the LB-RMPC strategy can effectively handle state 
constraints, while exhibiting a less conservative control 
performance compared to RMPC based on worst-case 
uncertainty bounds. Furthermore, online learning of the 
GP model allows for effectively handling the plant-model 
mismatch that arises from the variations in the thermal and 
electrical characteristics of the target substrate. We show 
that LB-RMPC holds great promise for safety-critical 
applications of APPJs, such as in plasma medicine, where 
plasma dynamics and plasma-substrate interactions are 
complex and hard to model using first principles, substrate 
characteristics are patient specific and can vary during the 
treatment (i.e., plant-model mismatch increases), and 
reliable state constraint handling is critical to safe and 
reproducible treatment. 

Sim-to-Real Transfer Reinforcement Learning  

A main challenge in model-based control of APPJs 
arises from the complexity of the plasma-substrate 
interactions. The plasma treatment of complex substrates 
is particularly sensitive to changes in the physical, 
chemical, and electrical properties of the substrate, which 
may vary considerably within and between target 
substrates. Here, we demonstrate the use of deep 
reinforcement learning (RL) for learning-based control of 
complex substrates with time-varying or non-uniform 
characteristics (Witman et al., 2019).  

 
A lumped-parameter, physics-based model of the 

thermal dynamics of the plasma-substrate interactions is 
used to train a RL agent for regulating the substrate 
temperature. To enrich the training data and reduce the 
“reality gap” between the simulated and real-world 
environment, dynamics randomization (Peng et al., 2017) 
is used to systematically randomize the parameters of the 
physics-based model during the training process to 
account for unmolded process dynamics as well as the 
different dynamics the RL agent may encounter during the 
plasma treatment (i.e., due to variations in the substrate).  
The RL agent is designed based on an actor-critic 
algorithm that uses deep neural networks to approximate 
the actor policy and the value function (Mnih et al., 2016). 
Real-time control experiments indicate the effectiveness of 
the RL agent for regulating the thermal effects of the APPJ 
on the target substrate in the presence of significant 

changes in the electrical and thermal properties of the 
substrate. The results highlight the importance of 
dynamics randomization in successful sim-to-real transfer 
learning of RL agents.         
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