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Abstract

Lithium-ion batteries are widely deployed in 

applications due to having low and falling costs, high 

energy densities, and long cycle lives (Dunn et al., 2011; 

Nykvist and Nilsson, 2015; Schmuch et al., 2018).  

Accurate prediction of cycle life using early-cycle data 

would unlock new capabilities in battery manufacture, 

optimization, and use. For example, manufacturers could 

accelerate the cell development cycle, perform rapid 

validation of manufacturing processes, and sort/grade new 

cells by their expected lifetime. Likewise, end users could 

estimate the battery lifetime expectancy (Peterson et al., 

2010; Ramadesigan et al., 2012; Waag et al., 2014). The 

task of predicting cycle life for lithium-ion batteries is 

challenging because of nonlinear degradation with cycling 

and wide variability, even when controlling for operating 

conditions (Schuster et al., 2015; Harris et al., 2017; 

Baumhöfer et al., 2014). 

Approaches using statistical and machine learning 

techniques to predict cycle life are mechanism-agnostic 

alternatives. A growing body of literature (Waag et al., 

2014; Wu et al., 2016) applies machine learning 

techniques for predicting the remaining useful life of 

batteries using data collected under both laboratory and 

real-world conditions. Predictions are made after 

accumulating data corresponding to degradation of at least 

25% along the trajectory to failure (Hu et al., 2014; Zhang 

et al., 2018) or using specialized measurements at the 

beginning of life (Baumhöfer et al., 2014). Accurate earlier 

prediction of cycle life – when significantly less 

degradation has occurred – is challenging due to 

nonlinearities in the battery degradation, uncertainties in 

degradation processes, and the limited availability of 

datasets that span a limited range of lifetimes (Saha and 

Goebel, 2007). For example, capacity values at cycle 80 

were only weakly correlated to capacity values at cycle 

500 for 24 cells exhibiting nonlinear degradation (Harris et 

al., 2017). Opportunities for improving upon state-of-the-

art prediction models include higher accuracy, earlier 

prediction, greater interpretability, and broader application 

to a wide range of cycling conditions. 

This poster summarizes recent work in the 

construction of data-driven models that accurately predict 

the cycle life of commercial lithium-iron-phosphate 

(LFP)/graphite cells using early-cycle data, with no prior 

knowledge of degradation mechanisms (Severson et al., 

2019). Cycle life (or equivalently, end-of-life) is defined as 
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the number of cycles until 80% of nominal capacity. A 

dataset was generated that consisted of 124 cells with cycle 

lives ranging from 150 to 2300 by using 72 different fast-

charging conditions. For quantitative prediction of cycle 

life, our feature-based models achieved prediction errors of 

15% using only discharge voltage curves from the 10th and 

100th cycles, at which point most batteries have yet to 

exhibit capacity degradation. The test error reduced to 

9.1% by incorporating data from additional cycles, internal 

resistance, and temperature measurements. We also 

demonstrate classification into low- and high-lifetime 

groups with a test error of 4.9% only by using data from 

the first 5 cycles. These results illustrate the power of 

combining data generation with machine learning to 

predict the behavior of complex systems far into the future. 
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