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Abstract Overview 

The dynamics of complex processes are characterized by strong nonlinearities and uncertainties. 
Monitoring such complex processes requires a high-quality model describing the corresponding nonlinear 
dynamic behavior. A deep neural network model is proposed to represent the state transition and 
observation equations in a standard stochastic nonlinear state space model. This model is learnt using an 
expectation-maximization algorithm and the posterior distributions of state variables are constructed by a 
forward-backward recurrent neural network. The resulting deep neural network model is used in 
detecting faults. The effectiveness of the proposed method is validated through the Tennessee Eastman 
(TE) process 
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Introduction 

   Modern industrial plants are extremely complex due to 
high-dimensional variables, nonlinear dynamics and 
uncertainties. As such it is difficult to model and monitor 
these plants. Most existing process monitoring algorithms 
in the literature focus on one or two aspects of the 
complexities mentioned above. To account for process 
nonlinearity, different types of nonlinear mapping 
strategies have been proposed. Examples include Kernel 
PCA (Lee 2004) and manifold learning which are 
considered to be shallow methods due to their single-
layer nonlinear mapping structure. Deep neural networks 
(DNNs) are state-of-the-art methods for approximating 
complex nonlinearities through multilayer nonlinear 
mapping. In recent years, different variants of DNNs such 
as stacked denoising auto-encoders (Zhang 2018), have 
been applied to industrial process monitoring.   
  A standard assumption with the above methods is that 
the data samples are identically and independently 
distributed, however, process data are serially correlated 
due to process dynamics and feedback control.  

It is generally accepted that monitoring dynamic 
processes cannot be successfully conducted without 
accurately identifying dynamic models and their 
corresponding model accuracy. This observation is based 
on the experience of monitoring linear dynamic systems, 
where system identification tools like maximum 
likelihood estimation have been widely used. Using auto-
encoding variational Bayes, also known as variational 
autoencoders (VAE) (Doersch 2016), in this abstract the 
nonlinear dynamic models are identified to perform 
nonlinear dynamic process monitoring. At the core of 
VAE is a nonlinear mapping from observations to latent 
variables (LVs) and the reverse mapping from LVs to 
observations using DNNs. The use of DNNs in VAE 
offers enough flexibility to approximate complex 
nonlinear mappings. An Expectation Maximization (EM) 
based parameter estimation algorithm is employed to train 
DNNs as this algorithm provides numerical stability and 
convergence. The VAE model is then extended to learn a 
nonlinear stochastic state-space model, which is 
approximated by a DNN. 

Table 1. Process monitoring results of the TE process 



  
 

 
Fault detection rates[%] 

DPCA AR-DLV DKPCA CPM-DPCA DNN-SS 
T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE 

IDV1 99.4 99.9 93.1 99.9 99.5 99.8 99.5 99.5 80.1 99.9 
IDV2 98.8 97.1 95.1 99.0 98.6 97.4 98.1 98.5 64.4 98.5 
IDV3 9.7 4.8 8.3 7.1 9.4 4.6 2.4 3.3 19.6 14.4 
IDV4 3.9 1.3 3.7 7.5 3.8 1.3 13.8 12.3 11.0 7.4 
IDV5 27.1 8.3 24.2 27.5 27.0 17.4 35.7 38.5 31.4 32.8 
IDV6 100 99.8 98.0 100 100 99.8 100 100 98.6 100 
IDV7 45.4 21.2 42.5 37.4 45.6 25.9 49.7 53.6 52.5 51.4 
IDV8 97.8 88.1 86.4 98.3 97.8 95.7 97.8 98.3 93.6 98.9 
IDV9 1.8 1.4 2.1 1.8 1.9 1.4 1.3 2.4 2.5 2.4 
IDV10 50.4 39.1 52.0 82.8 50.3 41.1 56.8 58.3 53.9 66.2 
IDV11 19.4 53.1 7.0 47.5 18.5 x.4 23.8 29.7 18.6 47.5 
IDV12 99.1 92.0 90.2 98.9 99.1 96.3 97.4 97.9 96.1 99.0 
IDV13 94.2 94.5 93.5 95.5 94.2 94.9 94.5 94.7 94.9 94.5 
IDV14 97.3 100 1.0 100 97.1 100 90.7 92.0 8.0 100 
IDV15 12.8 1.9 6.7 9.8 9.6 1.9 29.8 28.2 32.0 16.6 
 False alarm rates[%] 
IDV15 1.9 1.9 3.1 1.1 1.9 2.5 1.9 1.9 2.7 1.2 

Fig. 1 The structure of forward-backward RNNs for learning 
the distribution of the posteriors. 

 
Fig. 2 The realization of the local Gaussian descriptor of 
smoothed distributions 
 
   Hence, the identified model is referred as a deep neural 
network within a stochastic nonlinear state space model, 
abbreviated as DNN-SS, and applied to process 
monitoring. After the model is learnt, monitoring indices 
can be readily designed based on the identified model as 
is common with the standard algorithms for process 
monitoring.  

Learning DNN-SS Model 

A stochastic discrete nonlinear LV model with a 
first-order Markov structure is considered as follows, 

   (1) 

Note that  is also known as a state variable in 
dynamic systems. To avoid confusion, the phrase “state 
variables” is not used in this paper. Instead, is referred 

as the LV while in recurrent neural networks (RNN) 

specifies the cell state of RNN. In (1),  is an 
unknown function that describes nonlinear dynamics. 
Given the corresponding LV,  is another unknown 
nonlinear function that generates the observations (or 
measurements).  is unmeasured process noise which 
represents the process uncertainty while  represents the 
observation noise caused by sensors. Without any priors, 

 and  are assumed to be zero-mean Gaussian 
distributions, given by 

   (2) 

   (3) 

where the covariance matrix of  can be assumed to be 
an identity matrix without any loss of generality. 
Simultaneously, the initial LV distribution is assumed to 
be 

   (4) 

Thus, these terms  are 
needed to be estimated for process modeling and 
monitoring applications. To learn the model using the 
expectation maximization (EM) algorithm, the lower 
bound on the likelihood function is initially rewritten as 

 (5) 

where is the training 

dataset and is the 

corresponding unobserved LVs.  in (5) is 

chosen to be  and is evaluated using the 

estimates from the previous EM iteration. The variational 
lower bound for optimizing the log likelihood is given by 
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   (6) 

where const stands for a constant term to be ignored. 
 denotes the mathematical expectation operator and 

kl denotes the Kullback–Leibler (KL) divergence. To 
obtain the maximum likelihood estimate by maximizing 
(6), we need to define the posteriors . Since the LV 
follows a first-order Markov model, the posteriors are 
obtained by a forward filter of the form 

and backward smoother of the form  
- similar to Kalman filter and 

smoother. The model nonlinearities and the 
corresponding posterior density functions are 
approximated using a RNN as shown in Fig. 1. The 
individual states of the cells in forward and backward 
RNN are used to approximate the distribution of the 
filtering and smoothing posteriors, respectively. 
    The distribution of LVs are approximated using the 
following local Gaussian descriptor applied at each time 
instance 

   (7) 

DNN realization of the smoothed distribution (the red 
unit in Fig. 1) is presented in Fig. 2.  
    After the posterior distribution is implemented by the 
forward-backward RNNs, it is possible to learn the 
nonlinear dynamic system with the collected observation 
sequences . Hence, offline 
learning is performed with the given smoothed 
distribution . In the offline learning stage, the first 

term in (6) will be , implying the 

learned initial LV distribution  should be close to 

the smoothed posterior . This has been 

implemented by the backward RNN (Fig. 1), and  is 

the final output of the backward RNN. Also,  (the 
dashed line in Fig. 1) is assigned as the initial cell state of 
the forward RNN in each new iteration. However, the 
second and the third terms in the right side of (6) require 
the calculation of expectations associated with the 
posteriors. Because of complex distributions involved, it 
is difficult to evaluate the integrals in order to find the 
corresponding expectations. Therefore, an empirical 
average is used in place of the true expectation, i.e., the 
sampled value  drawn from the smoothed 

posterior  is used to calculate the integrals. Based 

on VAE, DNNs can be used to represent and 

. Therefore, the model can be learned by mapping 

the observations into the distribution of LVs and 
reconstructing the observations from the sampled values 
from the distributions of LVs.  

Case Studies 

Five methods for online monitoring in the Tennessee 
Eastman (TE) process are compared, including dynamic 
PCA (DPCA)(Ku 1995), autoregressive-dynamic LV(AR-
DLV)(Zhou 2017), dynamic KPCA(DKPCA)(Choi 2004) 
and constructive polynomial mapping DPCA(CPM-
DPCA)(Yu 2017) and DNN-SS. In this example, the 
significance level  is 0.05. T2 and SPE statistics are 
used to monitor process anomalies, respectively. Fault 
detection rate and false alarm rate are the two 
performance indices for process monitoring. Table 1 
presents the comparative results for 15 faults in TE 
process. One can see the proposed modelling approach 
outperforms other approaches. 

Conclusions 

In this work, a novel DNN-SS is proposed to learn 
complex stochastic nonlinear state space model. The 
learning algorithm of DNN-SS is supported by VAE due 
to the general statistical efficiency based on variational 
Bayes and the general nonlinear representation allowed 
by DNNs. And the proposed modelling approach is 
applied to industrial fault detection. The experiments on 
the TE process validate the efficacy of the DNN-SS based 
monitoring framework.  
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