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Abstract 

In this paper, a supervised machine learning method is proposed to project molecular features as 

floating-point numbers in a high dimensional space from the language-like description Simplified 

Molecular Input Line Entry Specification (SMILES) and densing them into a molecular fingerprint known 

as Molecular ACCess System (MACCS).      A neural network model is build using the location of a 

compound in the high dimensional space as input to predict the “sigma-profile”, the charge distribution 

of the molecule near a perfect infinite conductor, which is calculated by quantum mechanics. The sigma-

profile can be used in the COSMOSAC model for predicting thermodynamic properties such as activity 

coefficient.  Preliminary results showed that an accurate neural work model with generalization ability 

can be developed.  Moreover it was found that the sigma profile prediction accuracy direct use of MACCS 

as input is much inferior.   
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Introduction

Computer aided molecular design (CAMD) of products 

and processes involved following iterative steps (Ng et al 

2015): 

1. Generation a molecular structure. 

2. Extract a molecular features relevant to target 

properties. 

3. Predict target properties using the molecular features 

using a model. 

4. If target properties are satisfactory, stop 

5. Else go to step 1. 

The prediction step can be performed by semi-empirical 

methods the group contribution (GC) methods in which 

molecules were broken down into functional groups.  The 

properties were then predicted by either linear or nonlinear 

functions of group parameters or interaction parameters 

between groups.  For example, the Joback method (Joback 

and Reid 1987) for pure component properties is a linear 

function of group parameters. The UNIFAC method for 

activity coefficients for binary mixtures (Fredenslund et al 

1975) is a nonlinear function of interaction parameters 

between groups.  Alternatively, in quantitative structure 

properties/activities (QSPR/QSAR), topological indices or 

molecular descriptors based on chemical graph theory were 

used to predict properties (Rogers and Hopfinger 1994).    In 

recent years direct quantum mechanical calculations were 

used to predict thermodynamic properties.       For example,  

the COSMO method, quantum mechanical calculations is 

used to predict the charge distribution of a molecule near an 

infinite conductor, known as the sigma-profile (Klamt 

1995).  The sigma-profile can be used to predict 

thermodynamic properties of mixtures (e.g. COSMOS-RS 

Klamt and Eckert 2000, COSMO-SAC Lin and Sandler 

2002).  Substantial effort needs to be expended in producing 

the sigma-profile.  Database of sigma-profiles of a limited 

number of compounds was provided (Mullins et al 2006).  

Yet it is desirable that a fast surrogate generation method be 

developed to alleviate the load of first principle calculations. 

Recently the use machine learning or deep learning 

models has been used to develop improved QSPR.  In some 

work, e.g. Faber et al 2017, molecular descriptors are still 

used as the regressors, but machine learning models were 

used to replace linear or simple functional representations. 

Alternatively, simple 2-dimensional molecular structure 

were represented as an image as input a convolutional 

network for properties prediction (Goh et al. 2017).  Yet 

there are many ways to represent molecular structure 

ranging from aforementioned group contribution method to 

text-based description such as Simplified Molecular Input 

Line Entry Specification (SMILES) (Weininger 1998) 



  

 

or .mol file (Dalby et al 1992) or even three dimensional 

representation (Humphrey et al 1996).   

Recent development in machine learning has been able 

to convert word-based content into vector space (Mikolov 

et al 2013).  In this paper, a word embedment approach is 

proposed to map molecular features from SMILES 

representation into a high-dimensional floating-point vector 

space.  The mapping was trained by projecting positions in 

this high dimensional space into a simple molecule 

recognizer, and a molecular finger-print known as 

Molecular ACCess System (MACCS, Durant et al 2002).  

The positions in this high dimensional space was then used 

to develop a neural network to generate sigma-profiles.   

 

Word Embedment of SMILES 

Encryption of SMILES string 

The SMILES format encoded molecular structure 

clearly with a short ASCII string. It is able to read the 

structures like chain length, double bond (=), triple bond (#) 

and aromatic ring (c1ccccc1) easily.  The molecular 

structure of methanol and its SMILES and MACCs 

representation were given in Table 1.  

 

Table 1: Molecular structure, SMILES and MACCS 

representation of Methanol 

 
(a) Molecular structure 

CO 
(b) SMILES 

93: QCH3 

139: OH 

157: C-O 

160: CH3 

164: O 
(c) MACCS 

 

In order that the SMILES is readable by machine, we 

need to code the representation into a vector of numbers. 

We assumed that the maximum length of SMILES is 50, 

and assigned every elements and symbols used in SMILES 

to a specific number. Then we can translate the SMILES 

format data to sequences of numbers.  

 

Mapping to a high dimensional space 

However, these number sequences are encrypted codes, 

they do not have any metric of distance, nor do they 

“characteristic” or feature of the molecules. This coded  

sequence is map into a 50 × 𝑛   matrix using a neural 

network with 1  layer and 𝑛  nodes (embedded layer in 

Figure 1a and b). To ensure that some molecular features 

were embedded in the high dimensional space, two 

approaches were tested.  The first approach is called a 

SMILES molecular recognizer (SMILES_MOLREC).  In 

SMILES_MOLREC, the high dimensional vector was 

projected back into discriminant output which is 0 for a true 

compound or 1 for false compound.   This projection was 

done by a dense-layer composing of 1 long and short term 

memeory (LSTM) layer and 1 output layer with one node 

(Figure 1a).  

To train SMILES_REC, 1372 true compounds are used 

and tagged 0, or “true-compound”.  Another 1372 

compounds with randomly created SMILES file are tagged 

1 as “false” or “fake-compound”.  Supervised learning are 

used until the recognizer network can accurately distinguish 

between the two classes. 274 true compounds and the same 

amount of fake-compound are used as test set. 

In an alternative approach, a SMILES to MACCS 

(SMILES→MACCS) translator can be build.  The high 

dimensional vector was projected back into a 1x166 vector 

with entries which is either 1 or 0, which is the MACCS 

representation of the compound.  This projection was done 

by a dense-layer composing of 1 LSTM layer and 1 output 

layer with 166 nodes (Figure 1b). 

In training the SMILES→MACCS translator, the same 

1372 true compounds were used and an additional 274 true 

compounds were used as test data. 

 

 
(a) A SMILES molecular recognizer 

 
(b) A SMILES → MACCS translator 

Figure 1: Architecture of a Molecular Recognizer and an 

MACCS translator 

 

The test statistics were shown in Table 2.  The false positive 

rate and false negative rate were calculated for 

SMILES_MOLREC.  The average number of erroneous 

entries in a test compound  was given for  

SMILES→MACCS. 

 

Table 2: Test statistics of SMILES_MOLREC and 

SMILES→MACCS 

𝑛 SMILES_MOLREC SMILES→ 

MACCS 

False 

Positive 

False 

Negative 

𝜆 

100 1 0 0.0110 

200 1 0 0.0105 

500 2 0 0.0103 

 

Molecular of the high dimensional representation 

Classifications of compounds 

Principle component analysis (PCA, Jolliffe 2011) was 

performed to help visualize how molecules are distributed 

in the high dimensional space.  The high dimensional 

subspaces obtained using 𝑛 = 100 .   If we locate 



  

homologues of normal paraffins, straight chain alcohols and 

acids in the PCA subspaces.  In both spaces are arranged in 

an orderly manner, indicating that the embedment is able to 

transform the text-based SMILES input into a distance-

relevant high dimensional space that can be used for 

molecular recognition and classification. 

 

 

 
Figure 2: Arrangement of compounds in the PCA 

subspace of high dimensional map constructed by 

SMILES_MOLREC  

 

 
Figure 3: Arrangement of compounds in the PCA 

subspace of high dimensional map constructed by 

SMILES→MACCS 

 

Correlation of the Two High Dimensional Map 

 

Sigma profile predictions 

Random sampling 

To predict the sigma profile, three neural networks were 

build.  One used the MACCS vector directly as input.   The 

other two used the locations of high dimensional maps 

generated by SMILES_MOLREC and SMILES→MACCS 

as input. 

 

Table 3: The prediction accuracy (R2) of test compounds 

 R2 of Test Compounds 

 Mean Median Minimum 

MACCS 0.7151 0.8368 -1.4565 

SMILES_MOLREC 0.8687 0.9510 -1.1238 

SMILES→MACCS 0.8962 0.9581 -0.3489 

 

 

 

 

Effect of selective sampling 

Table 4: The prediction accuracy (R2) of test compounds 

 R2 of Test Compounds 

 Mean Median Minimum 

MACCS    

SMILES_MOLREC 0.9581 0.9732 0.7877 

SMILES→MACCS 0.9641 0.9808 0.7835 

 

Infinite Dilution Activity Coefficients 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4: Comparison infnite dilution coefficients 

calculated by COSMOSAC  using machine-learned and 

actual sigma profiles (a) water, (b) n-hexane, (c) DMSO, 

(d) Nitromethane 

 

 

 

Conclusions 

The above results serve as a preliminary demonstration 

that molecular classification and prediction of sigma-profile, 

results of quantum calculations, using text-based molecular 

description is possible.  A recognizer was trained using 

word-embedment network, and a LSTM transformation 

network.  The network gave no false negative and very few 

false positive.  PCA analysis showed that the transformed 

space can be used as for molecular feature representation 

and classification.  Use this space as input, we showed that 

fairly accurate prediction of sigma-profile can be developed.   

Optimization of network structure have not yet been 

considered.  The promising results suggest that extension of 

this approach to a more extensive data base should be a 

valuable for a priori property prediction and molecular 

design. 
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