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Abstract Overview 

A variety of spectroscopic measurement techniques are popularly used to obtain molecular level 

information of complex reacting systems. In this work FTIR and 1HNMR spectroscopic measurements 

consisting of absorbances across wavenumbers/chemical-shifts are obtained over varying process 

conditions (temperature and residence time) during the vis-breaking of Cold Lake bitumen. They are 

jointly factorized using a weighted, robust non-negative matrix factorization (NMF) algorithm for data 

fusion. The missing data in spectral measurements are handled by imputing them with a weighting matrix 

in the objective function that is formulated to minimize the L21 norm between a matrix of spectral 

measurements and its factors, making it robust to outliers in data that would otherwise dominate the 

objective function because of squared errors if an L2 norm was used instead. Additionally, the data 

fusion framework constrains the factors to be non-negative so that the decomposition is physically 

meaningful by complying with the Beer Lambert law for spectral data. Hence the factors can be 

physically interpreted as representing the spectral signatures and concentrations of a class of chemical 

compounds (pseudo-component). Unique information in the spectral signatures is obtained by 

incorporating a regularization term in the NMF objective that penalizes redundancy in the pseudo-

component spectra. The NMF objective also incorporates another regularization term that penalizes 

overfitting of the spectral signatures that contain unique information about the pseudo-components. 

Hence, they are used to develop inferential models for monitoring the complex process of vis-breaking 

by developing pseudo-reaction networks that hypothesize chemical pathways. This is done using the 

probabilistic graphical framework of Bayesian networks that encode directed acyclic causal pathways 

among the nodes of random variables which are represented by the spectral signatures. This facilitates 

building causal inferential models to generate reaction network hypotheses from spectral measurements, 

to demystify the underlying chemical reaction pathways in complex reacting mixtures. 
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In-line spectral analyzers are popularly used to obtain 

molecular-level information as they are fast, non-invasive, 

non-destructive, inexpensive and do not require sample 

preparation [1]. The process data from spectral analyzers 

are high dimensional, non-causal, non-full rank, noisy and 

have missing values [2]. Hence, this work focuses on using 



  
 

machine learning models on process data to develop causal 

inferential models for monitoring complex processes; with 

an application to developing pseudo-reaction networks that 

hypothesize chemical pathways[3]. In this paper the 

spectral datasets from FTIR and 1HNMR during the 

thermal upgrading of Cold Lake bitumen are mined to 

develop reaction pathways. 

Non-negative matrix factorization (NMF) is a 

workhorse in signal and data analytics for composition 

deconvolution from spectral data, text, image or audio 

signals [4]. NMF identifies latent factors to a level of 

limited ambiguities thereby increasing interpretability as 

compared to alternate factorization methods like Singular 

Value Decomposition (SVD) and Independent Component 

Analysis (ICA) based on orthogonal and independent 

factor decompositions that are unconstrained [4]. As a 

parts-based representation of latent factors NMF has been 

a good algorithm for soft clustering [5]. 

Spectroscopic techniques like Electron Spectroscopy, 

Mass Spectroscopy, Raman, FTIR, 1HNMR spectroscopy 

provide multi-dimensional information of chemical 

samples. These multi-dimensional datasets can be viewed 

as a linear mixing of weights (interpreted as 

concentrations) and reduced number of basis factors 

(interpreted as spectra of pseudo-components); the linear 

unmixing of which is done using NMF[6]. The absence of 

an NMF algorithm which integrates multi-view 

information i.e. JNMF of spectral data from different 

sources, is the prime motivation of this work. 

Data fusion methods are often classified based on the 

stage at which the fusion is performed [7],[8]: (a) Early 

fusion: Sequential concatenation of data by neglecting 

modularity (b) Late fusion: Fusing the prediction model 

results obtained from each data source separately. (c) 

Intermediate fusion: Fusion propagated by features of each 

independent data source [9],[10], making the structure of 

the predictive model robust. A popular algorithm to 

implement intermediate fusion is the constrained 

simultaneous matrix factorization [7], which is tantamount 

to multi-view non-negative matrix factorization or the joint 

non-negative matrix factorization (JNMF). 

 JNMF was used for data fusion of multi-view gene 

interaction network data with sparse penalty regularization 

constraints [10]. Diverse-JNMF was used to penalize 

redundancy in the fusion of multi-view data by using an 

orthogonality regularizer between the multi-view basis 

factors [11]. Weighted-NMF where missing values are 

imputed by zero [12] and Robust-NMF where the objective 

function is based on minimizing the L21 loss function to 

robustly deal with outliers and noise [13] are other variants 

of NMF that are proposed to be extended to multi-view 

data for JNMF in this work.      

Evidence of stage-based fusion of FTIR, 1HNMR and 

Raman spectroscopic data having resulted in better crude 

characterization [14]; has motivated us to develop a more 

robust intermediate fusion algorithm for integrating multi-

view spectral data to build models for hypotheses 

generation of chemical pathways. Since NMF has the 

advantage of being an interpretable factor decomposition 

method, utilizes optimization based matrix computation 

routines for its solution and has a scalable formulation for 

large-scale problems; this work focuses on using it as an 

unsupervised technique for the soft clustering of multiview 

spectral data into basis factors of the underlying latent 

objects weighted by a common parts-based matrix across 

all views. A projected optimal step gradient algorithm is 

developed to solve the Robust-Weighted-Joint-Non-

negative matrix decomposition with regularizers that 

penalize redundancy and overfitting of basis factors from 

different views. The interaction among the associated basis 

factors of the latent objects across the views obtained from 

the above formulation is encoded in causal Bayesian 

Networks that hypothesize the chemical pathways among 

the latent factors, which in the physical sense correspond 

to chemically similar compounds i.e. pseudo-components 

and mathematically correspond to the rank of the matrix 

from a spectral data view. 

Methods  

The data matrix from FTIR and 1HNMR 

measurements are denoted as X1 and X2, respectively. 

whereby the rows consist of the samples (m), while the 

columns are the spectral channels viz. wavenumbers (n1) 

and chemical shifts (n2). The objective of fusion is to 

combine both the spectral data matrices such that the 

following objective is minimized: 

         (1) 

Pi is a weighting matrix which imputes missing samples in 

Xi by a zero element to discount it in the JNMF 

factorization. R12 and Ri are correlation matrices to 

penalize redundancy and can be set to identity matrices to 

enforce orthogonal factorization. To make NMF robust to 

outliers a L21 norm is used instead of an L2 norm [13]. 

The number of latent factors, the level at which 

the JNMF is implemented is determined as the minimum of 

the ranks of each spectral matrix i.e. r=min(rank(X1), 

rank(X2)). The mathematical matrix rank can be 

interpreted as the number of compound classes whose 

concentrations change. Rank for each Xi is determined 

using SVD of Xi to obtain as many principal components 

as the number of variables (ni) [15]. 

  The Robust Weighted Joint NMF algorithm is 

used to solve the non-convex objective function (eqn. 1) 

using the projected optimal gradient approach. The Non-

negative Double SVD (NNDSVD) is used to initialize the 

decision variables W(mxr), H1 (rxn1), H2(mxn2) of the said 

dimensions. The gradients of the objective function with 

respect to the decision variables are given below: 

         

         (2) 

  



  

         (3) 

 The spectral signatures obtained from this method 

are used to construct Bayesian Networks by designating 

them as random variables with a multinomial distribution 

(the hyperparameters have a Dirichlet distribution). A 

directed path exists between nodes if it maximizes the log 

likelihood, which is a function of the mutual information 

and entropy. This amounts to maximizing the Bayesian 

information criterion (BIC), which is the log likelihood of 

the entire network (pairwise directed edges between nodes) 

penalized by the complexity of the network (number of 

edges between nodes). Heuristic greedy search score-based 

methods are used to obtain the Bayesian networks i.e.  the 

directed acyclic graph (DAG) encoding causal 

relationships among the factors obtained from JNMF.  

Results and Discussion 

The NMF objective function in eqn. 1 was solved using the 

method of projected optimal gradients over a range of α,β 

values [10-3,10-2,10-1,1,0,10,102,103]. The values of 

α=1,β=10-1 resulted in lowest reconstruction error of the 

matrices Xi from their factors W,Hi. The spectra Hi where 

i=1 corresponds to the FTIR spectra; i=2 corresponds to 

the 1HNMR spectra of the pseudo-components, are shown 

in Fig.1. It can be seen that the 1HNMR profiles of pseudo-

components 2 and 3 are insignificant owing to the 

regularization constraint that penalizes redundancy 

between the corresponding FTIR spectra. 

 
Figure 1.  FTIR and 1HNMR spectra 

The spectral signatures reveal the following: pseudo-

component 1 (PC1) mainly consists of carbonyl groups and 

cycloalkanes; PC2 consists of polyaromatics, alkoxy 

groups, phenols, alkenes; PC3 consists of aromatics, 

alkanes and condensed products; and PC4 consists of 

phenols, acyls and condensed aromatics. 

It can therefore be hypothesized from the Bayesian 

network structure in Fig. 2 that the underlying chemical 

reaction pathways during the vis-breaking of bitumen aim 

at obtaining more saturated end products through the free 

radical mechanism of hydrogen radical addition. However, 

the longer chain aliphatics crack to give more condensed 

polyaromatic products which are undesirable even as the 

end products are more aliphatic (alkanes and olefins). 

  

 
Figure 2.  Bayesian Network 

This work facilitates jointly mining spectral measurements 

in the framework of constrained data fusion to make the 

factors physically interpretable and representative of 

unique information, to implement a first pass at building 

causal inferential models to generate reaction network 

hypotheses from process data (spectral measurements). 
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