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Abstract Overview 

Surrogate models are used to map input data to output data when the actual relationship between the two 
is unknown or computationally expensive to evaluate. We have constructed a tool to recommend the 
appropriate surrogate modelling technique for a given dataset using attributes calculated from the input 
and output values. The tool identifies the appropriate surrogate modeling techniques with an accuracy of 
98%, a precision of 93%, and a correlation coefficient of 0.95 between the predicted and the actual 
appropriate techniques. 
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Introduction

Surrogate models, also known as response surfaces or 
black-box models, can be used to reduce computational cost 
by approximating more complex, higher order models 
(Wang et al., 2014). Surrogate modeling techniques are of 
particular interest where high-fidelity, thus expensive, 
simulations are used (Han and Zhang, 2012) or when the 
fundamental relationship between the design variables and 
output variables is not well understood, such as in design of 
cell or tissue manufacturing processes (Machin, M. et al., 
2011). These techniques have been receiving increasing 
attention in a wide range of applications, for example, in 
optimization of process design, scheduling, and control 
(Burnak et al., 2019). 

Several machine learning and regression techniques 
have been developed for constructing surrogate models. 
Current common practices for selecting which surrogate 
model form is appropriate rely on process specific expertise. 
Numerous studies have been comparted the performance of 
surrogate modeling techniques (Davis et al., 2017; 
Bhosekar and Ierapetritou, 2018). The majority of these 
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only compare a few models on a limited number of 
functions or applications. Progress has been made in recent 
works in generalizing the process for selecting a surrogate 
model to approximate a design space by using meta-
learning approaches to build selection frameworks (Garud 
et al., 2018; Cui et al., 2016). These frameworks provide 
“best” recommendations for surrogate modeling 
techniques, based on the attributes calculated from the data 
being modeled. In addition, the framework developed by 
Garud et al. (2018) gives a ranking of all the considered 
surrogate models based on the predicted accuracy of the 
model. However, neither framework takes model 
complexity into account, which can lead to overfitting, or 
considers that multiple models might perform similar to the 
one identified as best in terms their accuracies. 

To address the knowledge gap, this work compares the 
performance of eight different surrogate modeling 
techniques on a collection of generated datasets. Using 
information extracted from those datasets and building upon 
previous meta-learning approaches, we construct a tool to 



  
 
provide recommendations for the appropriate modeling 
techniques for the datasets based only on the characteristics 
of the data being modeled. The performance metric used to 
evaluate the model performance is the adjusted-R2 value 
(Miles, 2014), which balances the model accuracy with the 
size, or complexity, of the model. Data sets for training 
surrogate models were generated from a large set of test 
functions with different characteristics. The effect both the 
underlying shape of the function used to generate the dataset 
and the number of inputs on the performance of each 
technique is assessed to provide guidance on which 
surrogates provide the best predictions and give general 
“rules of thumb.” Additional characteristics, i.e., attributes, 
were calculated for each dataset with the goal of 
representing its overall behavior. These attributes were used 
as inputs, with the actual adjusted-R2 values as outputs, to 
train random forest models to provide predictions of 
adjusted-R2 values for each technique. Based on the 
predicted adjusted-R2 values, the tool identifies which 
surrogate modeling techniques are recommended for use 
given a set of data. 

Computational Experiments 

Surrogate Model Performance Comparison 

To evaluate the performances of the surrogate 
modeling techniques, 1000 input-output pairs were 
generated from each test function using Sobol sequence 
sampling (Joe and Kuo, 2003). Eight surrogate modeling 
techniques are used for comparison: multivariate adaptive 
regression splines (MARS);(Friedman, 1991), random 
forests (RF);(Brieman, 2001), single hidden layer feed 
forward artificial neural networks (ANN);(Haykin, 2009), 
extreme learning machines (ELM);(Huang et al., 2006), 
Gaussian process regression (GP);(Rasmussen and 
Williams, 2006), support vector machines (SVM);(Drucker 
et al., 1997), Automated Learning of Algebraic Models 
using Optimization (ALAMO);(Cozad et al., 2014), and 
radial basis function networks (RBFN);(Jin et al, 2001). 
Models were trained using the input-output pairs with each 
of the surrogate modeling technique for each function. This 
resulted in 808 surrogate models.  

When necessary, the hyperparameters of each 
surrogate modeling technique (such as the number of 
hidden neurons for ANNs) were optimized prior to training 
the models for each dataset. After the surrogate models 
were trained for each dataset, the adjusted-R2 values were 
calculated for each modeling technique-dataset pair. 

Recommendation Tool Construction 

Cui et al. (2016) and Garud et al. (2018) extract 
information from the datasets for use in their 
recommendation frameworks in the form of attributes. The 
attributes include common statistical measures, such as 
mean and standard deviation, gradient based attributes, and 
attributes related to the extrema of the output values. We 
have defined additional attributes related to both the 

estimated gradients of the datasets and the extreme values 
of the outputs to use as potential inputs for predicting the 
model performance with our recommendation tool, 
resulting a total of 32 attributes. 

A random forest model was trained for each surrogate 
modeling technique to predict its adjusted-R2 value using 
the identified attributes as inputs. Feature reduction was 
performed on the attributes to determine which attributes 
had the most influence on the predicted output value for 
each modeling technique. Each technique had a different set 
of selected attributes for prediction, with the only common 
attribute among all the techniques being the average value 
of the gradient estimates. For each dataset, based on the 
adjusted-R2 values, the surrogate modeling techniques were 
classified as either being recommended or not recommend 
for both the predicted and actual metric values. These 
classifications were compared and used to evaluate the 
quality of the selection recommendations. 

Adjusted-R2 for Surrogate Model Selection 

The formula for calculating adjusted-R2 (𝑅𝑅�2) is shown 
in Eq. (1). 

 (1) 

In Eq. (1), R2 is the R-squared, n is the number of data points 
in the training set, and k is the number of model parameters 
(or hyperparameters). 

Classification Evaluation Metrics 

The metrics used to evaluate the performance of the 
recommendation tool (i.e., the classification of surrogate 
modeling techniques given a dataset) are accuracy, 
precision, recall (Sokolova and Lapalme, 2009), and the 
Matthews correlation coefficient (MCC). The MCC 
(Matthews, 1975) is the correlation between actual and 
predicted classification. It has a value between -1 and 1, 
with one being a perfect correlation, -1 being a completely 
negative correlation, and 0 being no correlation or random 
assignment of classifications. Five-fold cross validation 
was used to evaluate the performance of the 
recommendation tool. 

Results 

Adjusted-R2 Performance 

Adjusted-R2 values were calculated for all the 
modeling techniques for each dataset. The percentage of the 
time each surrogate model had the highest adjusted-R2 
value was used to calculate the fraction of the available 
datasets for which a technique was identified as being the 
most accurate (Fig. 1). The number of datasets included in 
each category is included below the x-axis. 

𝑅𝑅�2 = 1 − (1 − 𝑅𝑅2) �
𝑛𝑛 − 1

𝑛𝑛 − (𝑘𝑘 + 1)� 



  

 
Figure 1. Percentage of datasets for which each model 

had the highest adjusted-R2 when datasets are grouped by 
(a) function shape and (b) input dimension 

When the datasets are grouped by the function shape, 
ANN models have the highest adjusted-R2 values. For bowl 
and plate shaped functions, ALAMO and MARS models, 
respectively, give the highest values for the largest 
percentage of the datasets. When the datasets are grouped 
by input dimension, ANN is the best performing model the 
highest percentage of the time at low input dimension. 
However, as the dimension increases, other models begin to 
perform as well or better than ANN models. This result 
indicates that there is some dependence of the surrogate 
model performance on the overall shape of the function the 
dataset was generated from and on the number of inputs. 

Recommendation Tool Performance 

The surrogate model selection tool identified which 
surrogate modeling techniques should be recommended for 
a dataset with an accuracy of 98%. The precision, or the 
probability that a recommended technique should actually 
be recommended, was 93%, and the MCC was 0.95. 

Conclusions 

Selection of the appropriate surrogate modeling 
technique depends on the characteristics of the dataset being 
modeled. In general, MARS and ANN models give the most 
accurate predictions for approximating a design space. We 
have identified attributes of datasets that are appropriate for 
use in predicting the adjusted-R2 value for a technique. 
Using these attributes, we have constructed a random forest 
model-based tool that can recommend appropriate surrogate 
modeling techniques for use with a dataset with a 98% 
accuracy. 
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