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Abstract 

The scale up/down of biopharmaceutical processes is still a very challenging task. Different cell lines, 
although clones of the same cell, display different performance in terms of drug productivity. In drug 
development, the effect of process parameters on cell line performance is often not completely 
understood and there is a lack of sound science-based methodologies to address this issue. However, the 
Industry 4.0 revolution is changing the biopharmaceutical industry standards. Extensive digitalization is 
determining that, even during the process development and scale-up, a significant amount of data can be 
collected and exploited.  
In this study we consider a monoclonal antibody manufacturing bioprocess and we focus on two main 
objectives: the possibility of identifying the most promising cell lines in terms of drug productivity and 
performance stability from the early development stages, and the prediction of cell lines performance 
across scales during scale-up/down. This is possible by taking advantage of the information available in 
the data using multivariate, multiway and multiblock statistical techniques.  
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In the last decade the Quality by Design (QbD) 
initiative gained large acceptance as an approach towards 
development and manufacturing of therapeutic products 
(Rathore, 2009; Mandenius et al, 2009). This suggests to 
design and control biopharmaceutical processes in such a 
way as to consistently achieve assigned product quality. 
Application of QbD entails in-depth understanding of the 
manufacturing process, although extended experimental 
campaigns on pilot-scale or commercial-scale plants are 
often not feasible. High throughput micro-well bioreactors 
are commonly utilized to carry out exhaustive 
experimental campaigns in a cost/time-effective manner. 

Unfortunately, micro-bioreactors cannot replace the larger 
production scales. In fact, several biological factors (e.g., 
clones mutation, contamination), chemical factors (e.g., 
pH) and physical factors (e.g., configuration, aeration, 
fluid-dynamics, mixing) cannot be studied at the same 
time in the micro scales. For this reason, a lot of passages 
are always utilized for bioprocess scale-up/down from the 
micro-scales and the intermediate ones up to the pilot and 
the commercial scale plant.  

In this study multivariate statistical methodologies are 
used to exploit the wealth of information available in the 



  
 
data collected at all scales to both accelerate bioprocesses 
scale-up/down and aid cell line selection. 

Biopharmaceutical process and available data  

The biopharmaceutical process under investigation is 
the manufacturing of a monoclonal antibody (IgG1). Nine 
development scales are considered at increasing size: 
“static” scales #1 to #6 (micro-well bioreactors) and 
“shaken/stirred” scales #7 to #9 (stirred bioreactors of 
increasing volumes). The equipment used is (by increasing 
scale): (i) 24-well plates, 6-well plates, and T25 for the 
static scales (culture volumes in the range of mL-cL); 
experiments may be “regular” or “late” at this scales, 
where late means prolonged; (ii) AMBR 15, shake-flask, 
and 2-liter bioreactors for the shaken/stirred scales 
(volumes in the range of dL-L). Time profiles of the 
measurements are available for the (two-week) 
experiments at these scales in T = 8 time points.  

The scale-up is carried out on different cell lines. The 
available data may refer to biological variables or 
chemical variables. The biological variables (usually 
related to drug productivity and cell lines stability) are 
related to cell concentration in the culture (titre), their 
vitality (viability) and productivity. The chemical 
variables are related to the observation of the cell status in 
terms of environmental conditions (pH), availability of 
nutrients (glucose concentration) and cell “health” (lactate 
concentration).  

Mathematical methodologies 

The mathematical methodologies used in this study 
are multiway principal component analysis (MPCA; 
Nomikos and MacGregor, 1994) for realtime cell line 
performance monitoring, and joint-Y projection on latent 
structures (JY-PLS; Garcìa-Muñoz et al., 2005) for cell 
line performance prediction across scales.  

MPCA 

Principal component analysis (PCA) is a correlative 
methodology that summarizes the dataset X [N×M] of N 
observations on M variables, by projecting it onto a 
reduced space of A<<M orthogonal principal components, 
which describe the direction of maximum variance of X: 

X=TP’+E   .                                                                    (1) 

P’ is the transpose of the [M×A] loadings matrix, 
namely the eigenvectors of the covariance of X; T is the 
[N×A] score matrix, i.e., the coordinates of the samples 
projected onto the PCs; E is the [N×M] residual matrix 
minimized in a least-squares sense. The data in X are 
autoscaled, i.e., mean centered and scaled to unit variance. 

This methodology can be easily extended to study the 
dynamics of experiments for which time profiles of the 
variables are available. To this purpose, multiway PCA 

(MPCA; Nomikos and MacGregor, 1995) is used. MPCA 
is a PCA on a multidimensional matrix X [N×M×T], 
where M variables are collected for N experiments in T 
time instants. MPCA deals with X by performing a PCA 
on the experiment-wise unfolded matrix, where each 
experiment corresponds to a different cell line to be tested.  

JY-PLS  

JY-PLS (García Muñoz et al., 2005) relates input 
datasets X i [Ni×Mi] and X j [Nj×Mj] from different scales i 
and j, through the space of the corresponding response 
variables Y i [Ni×U] and Y j [Nj×U]. The correlation of 
data within each scale is studied through the relation 
between X i and Y i, whereas the correlation between 
scales is assessed through the relation between Y i and Y j. 
The JY-PLS mathematical formulation is: 

YJ= TJQJ’+F   .                                                               (2) 

QJ’ is the transpose of the [U×A] loadings matrix of 
the common latent space of YJ, TJ is the [(Ni+Nj)×A] 
joint score matrix obtained concatenating vertically the 
scores of each scale, F is the [(Ni+Nj)×A] matrix of the 
residuals. JY-PLS does not pose restrictions on the 
number and the type of clones Ni and variables Mi 
measured at each scale i. The only constraint is that the 
responses Y i and Y j must follow the same statistical 
distribution. Data pretreatment is performed by 
autoscaling and dividing each matrix by the square root of 
its number of elements, to consider the different dataset 
dimension.  

Results  

Cell line selection 

An MPCA model was built for the AMBR 15 scale 
dataset (cell biological and chemical markers) to assess the 
dynamic behavior of different cell lines at each time 
sample. Two LVs explained ~ 50% of data variability. 

The score space of this model is an effective map of 
the dynamic behavior of the clones. In Figure 1, MPCA 
separates the condition of the “golden” (i.e., high 
productivity) cell lines (green circles), from low 
productivity ones (black triangles), the latter being 
typically associated to the smallest values of PC1. These 
maps are effective in the sense that the most productive 
cell lines are identified considering jointly the effect of 
several biological markers (e.g., cell titre and viability). 
Furthermore, it was found that usually the most productive 
cell lines are those which are exposed to a larger amount 
nutrients and that display the lowest lactate concentration 
(details are not reported for conciseness).  

This performance mapping strategy can also be 
utilized to monitor the cell line cultivations (red and blue 
open squares of the validation cell lines) over the duration 



  

of the experiment (i.e., along time instants 1-8). Two 
examples are shown in Figure 1.  
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Figure 1. MPCA model to monitor cell lines 
productivity in the AMBR15 scale and select 

the “golden cell lines”. Numbers 1-8 within the 
squares (validation clones) indicate the time 
sequence of the measurements for a single 

experiment on a cell line. 

The open red squares refer to a new cell line, whose 
performance is monitored during an AMBR15 experiment 
by plotting it onto the model space: the cell line 
consistently projects onto the low productivity half-plane. 
The experiment starts at time point 1 close to the origin of 
the model space, but evolves towards low values of PC1, 
where poor productivity is typically observed. The 
conclusion is that this cell line should not be progressed to 
the upper scales. In a different experiment, a good-
performing cell line (open blue squares in Figure 1) starts 
from similar conditions, but evolves towards high PC1 
values, where high productivity lines are typically 
mapped. 

Another valuable indication is obtained by observing 
that after 4-5 time points (~50% of the experiment 
duration, or 1 week), the cell line performance stabilizes in 
a given zone of the score space. This indicates that the 
experiment might be shortened with no loss of information 
on cell line selection.  

Prediction of cell line behavior 

It was found that all the most important productivity 
variables can be estimated from the other variables 
measured at the same scale, if the information available 
from other scales is used jointly (JY-PLS modeling). 
Prediction aims at reducing the number of measurements 
required in an experimental campaign. A leave-one-out 
procedure was used to test prediction across scales. Only 
results on the static scales #1 to #6 are provided here, and 
cell viability is estimated. The estimation accuracy is 
satisfactory: the determination coefficients in validation 
range between 0.86 and 0.98 for all scales. Furthermore, 

the estimation error e is much smaller than the intrinsic 
variability of the response variable (standard deviation sY 
of cell viability; Table 1).  

Table 1. Estimation accuracy of the JY-PLS cell 
viability estimation across static scales.  

static scale # 100 (e/sY) 
1 10.4 
2 9.8 
3 3.0 
4 2.0 
5 3.1 
6 1.7 

 
The proposed methodology is effective and especially 

useful when the number of experiments within one scale is 
very small (< 6), allowing for a significant reduction on 
the number of experiments. 

Conclusions 

In this study, multivariate statistical approaches 
supporting biopharmaceutical process scale-up/down were 
presented. In particular, a methodology for the selection of 
the “golden cell lines” was developed together with a 
methodology for the estimation of the most important 
biological variables across different scales within the 
development process.  

The golden cell lines selection identified the most 
promising cell lines with respect to drug productivity by 
means of a monitoring model based on multiway principal 
component analysis. Furthermore, it was found that the 
duration of an experiment can be reduced.  

Finally, a method to estimate the most important 
productivity variables from the information embedded in 
each scale demonstrated to be promising in accelerating 
the process scale-up/down.  
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