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Abstract Overview 

The increasing awareness of climate change moves the focus of the chemical industry to aim not only for 
economics but also for ecologically optimal processes. However, the design of ecologically optimal pro-
cesses requires an assessment of environmental impacts that can be applied in early process development 
stages. In early stages of process design, an environmental impact assessment is limited by the lack of 
data. In this work, we propose a fully predictive Life Cycle Assessment (LCA) framework using neural 
networks. Input data are only molecular properties from quantum mechanics calculations and process in-
formation available from pinch-based process models. The resulting framework is fully automatized in-
cluding feature selection and hyperparameter optimization, and shown to be able to predict 17 environ-
mental impact categories. 
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The assessment of environmental impacts is key for 
the chemical industry to meet their goals on climate protec-
tion. To assess environmental impacts, an accepted method 
is Life Cycle Assessment (LCA), which is an ISO-normed, 
holistic approach taking into account all phases of the life 
cycle (DIN EN ISO 14044: 2018-5).  However, LCA re-
quires detailed data on energy and mass balances, which is 
usually limited in early process development stage. There-
fore, streamlined approaches have been proposed, that 
either reducing the scope or simplify the required data 
(Casamayor and Su 2012). 
 

A promising streamlining approach uses machine 
learning techniques to predict environmental impacts based 
on the molecular structure of the product (Wernet et al. 
2009, Song et al. 2017). Since this approach requires only 
a training set consisting of LCA results with already as-
sessed chemicals and the molecular structure of the novel 
product to be predicted, this prediction approach is highly 
suitable to be integrated in early process development 
stages. However, using only the molecular structure as 
input, results in component-specific predictions. The ap-
proach is not able to distinguish between process alterna-
tives leading to the same product.  



  
 

An alternative streamlining approach uses simplified 
process design methods to estimate energy demands (Righi 
et al. 2018). However, on the one hand, Righi et al. stated 
that building a preliminary process model requires 
knowledge and effort to estimate energy demands well, and 
on the other hand, the use of oversimplified models might 
produce significant discrepancies in the results. Thus, pre-
liminary process models can generate data for LCAs in 
early development stage but require much more knowledge 
for sound results. However, the resulting LCA results can 
be used to compare process alternatives. 

To combine the advantages of both streamlining ap-
proaches, we propose a fully automated framework to pre-
dict the LCA environmental impacts. The framework inte-
grated pinch-based process models (Redepenning et al. 
2017) for automated process design of chemical processes 
with artificial neural networks. Since the framework is ful-
ly automated, it can serve as screening tool for environ-
mentally favourable process alternatives in the chemical 
industry.   

Fully Automated Algorithm for Predictive Life Cycle 
Assessment 

We propose an algorithm consisting of four steps:  
1. Feature collection 
2. Feature selection 
3. Hyperparameter optimization 
4. Impact prediction 

In the first step, the algorithm requires two inputs from the 
user: the SMILES-Code of the desired product describing 
the molecular structure (Weininger 1988) and its reaction 
equation. Optional inputs are the reaction temperature and 
pressure, if these reaction conditions are already known. In 
a next step, thermodynamic properties of the product and 
the reaction mixture, such as the reaction enthalpy, are 
obtained from quantum mechanical calculations using ge-
ometries and frequencies from b3lyp/TVZP and energies 
from b2plyp/aug-cc-pVQZ level of theory.  Pinch-based 
process models are used to calculate process-specific mix-
ture properties such as the mole fraction in liquid-liquid 
equilibria. All features are passed to the feature selection 
step 2. In step 3, a genetic algorithm (GA) generates auto-
matically a feedforward artificial neural network (ANN) 
for a given training set. In step 4, the optimized ANN is 
used to predict the environmental impact of the regarded 
process. The algorithm is implemented in Python 3.6 using 
Tensorflow and Deap. 

Feature selection 

We consider 218 possible features in total, consisting 
of molecular descriptors of the molecular structure and 
physical properties, and process descriptors obtained by 
the Douglas hierarchy and based on the process indicators 
proposed by Patel et al. (2012). Examples are the molecu-
lar weight as molecular descriptor or the mole fraction of 
the product in reactor equilibrium as process descriptor. 

In Step 2 of our algorithm, we use recursive feature 
elimination with cross validation as feature selection algo-
rithm. We compared several feature selection algorithms, 
including: principal component analysis, non-linear princi-
pal component analysis (utilizing kernel method), selecting 
the best singular features, recursive feature elimination, 
recursive feature elimination with cross validation, exhaus-
tive search, sequential feature selection, sequential floating 
feature selection, sequential backward elimination, RRe-
liefF, feature selection and feature selection using genetic 
algorithms (both as wrapper and embedded methods). The 
comparison has shown that recursive feature elimination 
with cross validation delivers the best performance in 
terms of minimum root mean squared error (RMSE) and 
maximum coefficient of determination (RP

2), whilst requir-
ing small computational time.  

Due to limited LCA data availability for the training, 
the number of selected features is limited to 10 % of the 
number of training samples to avoid overfitting.  

Hyperparameter optimization 

In Step 3, the hyperparameters, including the number 
of hidden layers, the number of neurons in each hidden 
layer, and the regularization parameter are optimized using 
a genetic algorithm (GA). The objective of the GA the 
ratio between RMSE and RP

2. We propose to minimize the 
ratio of the two error measures to minimize the absolute 
error (RMSE) as well as possible trends (R2

P). Minimizing 
only the RMSE tends to lead to constant predictions of the 
average impact value, while minimizing only the coeffi-
cient of determination improves predictions of trends but 
increases absolute prediction errors. 

To validate the proposed network architecture as well 
as the final prediction quality, the available training data is 
divided into 3 sets: (1) a training set, (2) a validation set 
and (3) a final test set. The training set contains 85 % of 
the available training data and is used to train the ANN in 
each GA loop. The validation set contains 10 % of the 
training samples and is used to quantify the generalization 
ability of the regarded set of hyperparameters in each GA 
loop. The calculated objective on the validation set is 
passed as feedback to the GA. The test set consists of 5 % 
of the training samples and is used to calculate the final 
objective value and to validate the overall performance of 
our algorithm. Due to the local nature of the GA, we use a 
multistart approach, running several GA instances in paral-
lel. After the GA converges, the optimal architecture is 
used to estimate environmental impacts of the regarded 
process. 

Case study: Component vs. Process-specific Networks 

The proposed framework is applied to generate 17 
neural networks, each predicting one of 17 Recipe v1.08 
(H) Midpoint categories (Goedkoop et al., 2009). For 
training purposes, we obtain 220 training samples from the 
LCA database Ecoinvent (Wernet et al. 2016).  



  

Here, we exemplify the framework for comparing the 
CO2-based production of methanol and formic acid with 
their fossil-based productions, respectively (Figure 1). We 
consider two scenarios: “today”, assuming hydrogen sup-
ply by steam methane reforming and European grid mix for 
electricity, and “future”, where hydrogen is supplied by 
electrolysis and electricity is produced by wind power. 
Carbon dioxide is the carbon source for the CO2-based 
processes and captured from an ammonia plant in both 
scenarios. The fossil-based processes utilize synthesis gas 
as carbon source. The results are compared to the results 
obtained with a component-specific ANN and with litera-
ture. 

Figure 1.  Comparison of the prediction quality 
of climate change impacts by the proposed 

process-specific ANN and a component-specific 
ANN to literature values. 

In literature (Artz et al. 2018), the CO2-based produc-
tion of formic acid is environmentally beneficial in com-
parison to the fossil-based production for both scenarios, 
indicated by the positive sign of the reduction potential. In 
contrast, the CO2-based production of methanol is envi-
ronmentally worse in the today-scenario but becomes 
promising in the future as indicated by the change of sign 
in the reduction potential. The component-specific ANN is 
not able to distinguish between production alternatives and 
thus cannot be used to predict a reduction potential due to 
changing the production process.  

In contrast, the process-specific ANN can resolve pro-
cess alternatives and correctly predicts a positive reduction 
potential for CO2-based formic acid in both scenarios. The 
CO2-based methanol is correctly predicted to have a nega-
tive reduction potential in today turning into a positive 
reduction potential in the future-scenario. Although the 
absolute potentials are not predicted correctly, the process-
specific ANN is able to predict the sign for each compari-
son correctly and thus can be used for a first screening in 
early process development stages.  

Conclusion 

A fully automatized framework is presented to predict 
process-specific life-cycle assessments by combining sim-
plified process design with artificial neural networks. The 

framework is exemplified in a case study comparing CO2-
based production to fossil-based production of both meth-
anol and formic acid. The results show that the proposed 
ANN is able to predict whether a technology change has 
the potential to reduce climate change impacts. Thus, the 
proposed framework can be integrated as a screening tool 
in early process development stages.  
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