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Abstract Overview 

Process systems possess complex dynamics and multivariate interactions. Data collected from such 
systems may contain information regarding such interactions and can be used to verify known 
relationships and/or help facilitate the discovery of new and novel relationships. The traditional use of the 
principal component analysis (PCA) can be extended to the discovery of novel relationships by imposing 
sparsity constraints on the principal component loadings. Additional benefit of the sparse PCA (SPCA) 
emerges in fault diagnosis which is a key component of process monitoring strategies. This paper will 
introduce methodologies that rely on SPCA in uncovering multivariate relationships and fault signatures.  

Keywords 

Sparse principal component analysis, process discovery, fault detection and diagnosis. 

Introduction

The use of analytics to uncover hidden features and 
trends in data collected from various platforms has been the 
focus of an increased number of studies in the last decade. 
With the recent emphasis on initiatives such as Industry 4.0 
and digital transformation of corporate enterprises, the use 
of data for decision making processes both in the long term 
and short term gained significant momentum. This is 
accompanied by the abundance of data collected in various 
forms from a wide variety of sources. A report published in 
2011 by McKinsey Global Institute (McKinsey, 2011) 
captures the impact of big data on corporate management 
and operations and outlines the challenges and opportunities 
for innovation and productivity. 

 
The manufacturing industries are also going through a 

transformation as big data is fueling the era of optimized 
smart manufacturing (O’Donovan et al., 2015). A recent 
perspective article by Reis et al. (2015) articulates the 
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impact of big data and the associated research on the process 
industries. While the benefits of exploiting big data for 
decision making is clear, they also caution as to the 
improper use of data, and overreliance on the results and 
predictions. A potential pitfall generated by the abundance 
of data is to overlook the knowledge embedded in process 
models that capture fundamental physico-chemical 
relationships that underlie the operation and dynamics of 
process systems. An important question and a challenge is 
the incorporation of both data-driven and theory-driven 
knowledge into the decision making. In this paper, we first 
explore the use of data-driven techniques not only to verify 
known relationships among process variables but also to 
create an environment that can allow discovery of new 
knowledge in the form of correlated (not necessarily causal) 
relationships among the key process variables. Such an 
exercise can further enable the application of real-time 
process monitoring techniques (Qin, 2015) by providing the 



  
 
engineers and operators with more focused variable 
groupings, facilitating root-cause analyses. 
 

We introduce sparse principal component analysis 
(SPCA) as a technique that can (1) provide the means 
towards new knowledge discovery, and (2) improve 
substantially the diagnosis of abnormal/faulty events in 
process systems. The Tennessee Eastman Process (TEP) is 
used to illustrate the salient points. 

Sparse Principal Component Analysis (SPCA)  

Principal component analysis (PCA) is the most 
commonly used multivariate technique (Joliffe, 2002). In its 
simplest form, raw data can be measured in two dimensions: 
number of samples (n) and number of variables (p) where 
both n and p can be large. PCA extracts the essential 
information from p variables of the original dataset into k 
retained principal components (PCs). Often, k is much 
smaller than p. Nevertheless, all p variables have non-zero 
loadings on the derived PCs and this, in turn, may confound 
the interpretation of PCs especially when p is large. 

 
SPCA is a recent technique proposed for producing 

PCs with sparse loadings via the variance-sparsity trade-off 
(Trendafilov, 2014, Jolliffe and Cadima, 2016). Zou et al. 
(2006) proposed a strategy to obtain sparse loadings by 
reformulating the PCA as a regression problem and 
imposing LASSO (elastic net) constraints on the L1 norm 
of the regression coefficients (sparse loadings). SPCA 
modifies the traditional PCA algorithm whereby the 
interpretability is improved through limiting the number of 
non-zero coefficients (loadings). The number of non-zero 
loadings (NNZL) are referred to as the cardinality or L0 
norm of the corresponding component. We have shown that 
the ability to diagnose a fault is greatly enhanced by 
identifying the components with most contributions to the 
fault (Gajjar et al., 2018). 

 
Merola (2015) proposed an algorithm where the sparse 

loadings are computed by a reformulation of PCA as a 
regression with backward elimination. Known as least 
squares sparse principal component analysis (LS SPCA), it 
has a number of advantages by preserving the uncorrelated 
nature of PCs, allowing one to control the cardinality and 
variance captured by the PCs. This work will use Zou’s 
algorithm in knowledge discovery and the Merola’s 
algorithm for fault detection and diagnosis 

Forward SPCA 

Once k and the loading matrix are obtained for a given 
dataset, the optimum sparse loadings are sought by 
considering the trade-off between sparsity and cumulative 
percent variance (CPV) explained (Gao et al, 2018). In this 
process, the determination of the NNZL on each SPC is 
critical. As a heuristic for process systems, one can consider 
the basic pairwise causality between a manipulated variable 

and its corresponding controlled variable. In most cases this 
would be the minimal expected relationship among process 
variables. The forward SPCA approach is initialized by this 
heuristic rule to find the optimum NNZL for each SPC 
sequentially: i.e., the optimal NNZL is found for the first 
SPC with the maximum CPV by fixing that of the other (k-
1) SPCs. After this, the optimal NNZL is found for the 
second SPC with the maximum CPV by fixing that of the 
other (k-1) SPCs. These steps are repeated until the 
difference between the new CPV and the old CPV reaches 
a pre-defined limit, thus revealing no further improvement 
in the variance explained by decreasing sparsity. 

 
The goal of forward SPCA is to determine if significant 

insight can be gained by systematically sacrificing sparsity. 
With this forward SPCA method, only the first few SPCs 
contain more non-zero loadings, which achieving the 
desired sparsity and insight. Furthermore, one can readily 
distinguish and grasp the dominant information patterns 
captured by each SPC through the change of the loadings in 
each search step. Once the optimum sparse loadings of 
SPCs are obtained, one can extract valuable process 
knowledge by attempting to interpret them. The dominant 
process variables having relatively high loadings on one 
SPC are most likely to be strongly correlated due to their 
inherent operational characteristic. On the other hand, the 
process variables having relatively small loadings on one 
SPC would have weak correlations with the other variables.  

Case Study 

TEP (Downs and Vogel, 1993) has five major unit 
operations: an exothermic reactor, a product condenser, a 
vapor-liquid separator, a recycle compressor and a reboiled 
product stripper. A total of 33 variables that consist of 22 
continuous process measurements and 11 manipulated 
variables are selected in this study. 960 normal samples 
with sampling rate of 3 min are used to build the SPCA 
model (http://web.mit.edu/braatzgroup/links.html).  
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Figure 1.  NNZL for SPC 3. Color code indicates the 

magnitude of loadings 
 
Figure 1 shows the NNZL for SPC 3 where the 

highlighted measured variables indicate a strong correlation 
between the reactor temperature control loops and the Feed 



  

D flow controllers. This is an unexpected relationship and 
demonstrates the potential for knowledge discovery as to 
the influence of component D on the reactor operation. 

Parallel Coordinates 

Recently, Gajjar et al. (2016) demonstrated the 
advantages of parallel coordinates and PCA for real-time 
process monitoring. With parallel coordinates, the 
perception barrier of 3-dimensional visualization can be 
broken facilitating the visualization of multidimensional 
problems and studying trends in multivariate datasets. 
Parallel coordinate visualization not only aids our pattern 
recognition ability without having to visualize the data in a 
combinatorial fashion but also enables us to extract insights 
from the dataset. In this case, the resulting SPCs are 
arranged in order of decreasing variance captured, and since 
SPCs are uncorrelated, the order becomes irrelevant.  
 

 
Figure 2. Visualizing 14 PCs in parallel coordinates 

for fault #1 with 85% CPV PCA. 
 

 
Figure 3. Visualizing 14 SPCs in parallel 

coordinates for fault #1 with 85% CPV PCA. 

Fault Diagnosis with SPCA and Parallel Coordinates 

Here LS SPCA is used to develop a methodology for 
detection and diagnosis of faults. In the off-line step, data is 
acquired under the normal operating regime and 
standardized. This is followed by the definition of the 
cumulative percent variation threshold target and the 
application of LS SPCA to generate the loading matrix. 
Next, the control limits for the SPCs are established and the 
Random Forest algorithm (Gajjar et al., 2018) is trained on 
scores and residuals obtained from faulty data. The on-line 
step involves the acquisition of new data, its projection to 
get the new scores and checking to see if the projection is 
within control limits. If not, a fault is declared and the 
diagnosis step is initiated using Random Forest. 

Case Study 

An LS SPCA model is developed for the TEP data to 
explain 85% variance with 14 SPCs. Figures 2 and 3 
compare the resulting PCs and SPCs in parallel coordinates 
where the scores from faulty process operation can be easily 
distinguished from the normal operating region for fault #1. 
As expected, the fault signatures are visually different for 
the same fault in LS SPCA vs. PCA. This greatly facilitates 
the fault diagnosis performance of the proposed method. 

Conclusions 

Sparse PCA is introduced as a means to discover 
known and/or hidden relationships among process variables 
and to diagnose faulty events in process operation. More 
discussion of results will be available at the conference. 
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