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Abstract—Causal network modeling is an important part of alarm 

root cause analysis in industrial process. The transfer entropy is an 

effective method to model the causal network. However, there are 

some problems in determining the prediction horizon of transfer 

entropy. To solve the problems, a modified transfer entropy, which 

consider about the prediction horizon from one variable to another and 

to itself simultaneously, is proposed to improve the capacity of 

causality detection. Moreover, based on the data-driven and process 

knowledge modeling methods, an approach combining the modified 

transfer entropy with superficial process knowledge is designed to 

correct false calculations and optimize causal network models. Two 

case studies including a stochastic process and Tennessee Eastman 

process are carried out to illustrate the feasibility and effectiveness of 

the proposed approach. 

I. Introduction 

Alarm systems play a fundamental role in the modern 
industrial system. Nowadays, alarm flood is one of the most 
common problems of the industrial alarm systems due to the 
large-scale and complicated processes. Nuisance alarms and 
causal alarms are the main sources of alarm floods [1]. Causal 
network modeling is necessary to overcome the causal alarms. 
With a causal model, the causality can be visualized by directed 
graph, and the alarm root causes can be diagnosed easily and 
effectively. As a result, alarm floods can be alleviated at source. 
Therefore, capturing the causality among process variables and 
establishing the causal model are important and necessary to 
handle the problem of causal alarms. 

Causal model is a model that describes causality among 
process variables. The methods for modeling the causality can 
be divided into two kinds: one is knowledge based modeling 
and the other one is data-driven modeling. Knowledge based 
modeling is qualitative, which lacks quantitative information to 
determine the strength of causality. Besides, it’s hard to realize 
without the expertise. With the rapid development of computer 
and measuring techniques, data-driven modeling methods, such 
as time-delayed correlation analysis[2], granger causality[3-5], 
Bayesian network[6-8], interpretive structural model[9,10] and 
transfer entropy, have been explored and developed broadly. 
Transfer entropy was proposed by Thomas Schreiber to 
quantify the information exchange [11]. It essentially describes 
the causality caused by information flow, which has been 
applied broadly in many fields like neurology [12] and 
economics [13]. Margret Bauer used transfer entropy to study 
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the disturbance propagation path in chemical plants [14]. 
Afterwards, different kinds of modified transfer entropy were 
put forward. Staniek proposed symbolic transfer entropy to 
reduce the influence of noise through replacing the original time 
series by symbolic time series [15]. Duan put forward a kind of 
direct transfer entropy to determine the direct causality between 
variables [16]. To avoid the kernel density estimation, Yu 
calculated the transfer entropy by use of binary alarm data [17]. 
Although these methods have been proven efficient, they have 
to meet the presumption that the process is static Markov 
process. That is to say, the process dynamics should keep 
unchanged. However, not all the real processes can be 
approximated as Markov processes. As a result, the transfer 
entropy analysis would be wrong [18].  

Motivated by the above considerations, a new kind of 
modified transfer entropy is proposed to overcome the 
shortcomings of parameters optimization in this paper. Besides, 
the superficial process knowledge is used to adjust the results of 
our proposed algorithm. Causal network is then established. 
The feasibility and effectiveness of this approach are proven by 
a stochastic process and Tennessee Eastman process. 

II. Principle of TRANSFER ENTROPY 

Transfer entropy originates from information entropy 
proposed by Shannon in 1948 [19]. Information entropy is 
aimed at quantifying the process uncertainty. The higher the 
information entropy is, the greater the uncertainty is, and the 
more information the process has. On the basis of information 
entropy, in 2002 Schreiber proposed the transfer entropy theory 
to measure the information exchange [20]. The formula of 
transfer entropy is as follows: 
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Considering the time delay of information exchange between 

two variables, Bauer changed the formula as: 
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where h is the prediction horizon. Being reference, the interval 

between the current time and the future time should be constant. 

But in formula (2), the interval will change with h. This is

unreasonable, and in some cases the prediction horizon 

couldn’t be decided. So Shu changed the formula as: 
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where 
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i
x  in (2) is changed to 
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 in (3). In this way, the 

interval between 
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1

k

i h
x
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and 

 k

i
x keeps constant. Since the 

effects of two variables make on each other are different, the 
transfer entropy is asymmetric. The causality between two 
variables can be measured as: 
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If 
y x

T


 is positive, Y is the cause of X; whereas X is the cause 

of Y. If 
y x

T


is close to zero, there is no causality between 

them. 

III. Modified transfer entropy and causal network 

modeling 

A. Modified transfer entropy algorithm 

Transfer entropy can be expressed as the different between 
information entropy. The formula (3) can be rewritten as: 
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where  i h
H x x


is the conditional information entropy of x  

to 
i h

x


, and  ,
i h

H x x y


is the conditional information 

entropy of x and y  to 
i h

x


. Form formula (5) we can see that 

the information propagates not only between two different 

variables but also between the same variable from current time 

to the future time. In formula (5), the interval between the 

current time and the future time is one sample interval. 

Different process may have different sampling time. In this 

way, the interval can’t be adjusted automatically. Hence, we 

propose a new kind of modified transfer entropy by introducing 

x
h  to fully consider the prediction horizon itself. The formula 

is as follows: 
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where 
x

h denotes the prediction horizon between x and 
i h

x


. 

Using formula (6), h can be fixed and the interval between x  

and  
i h

x


can be optimized by changing 
x

h .The parameters 

, ,k l h  and 
x

h  in formula (6) should be determined. 

According to the study of Overbey [21, 22]and Nichols[23], for 

simplicity, the process can be regarded as first order Markov 

process, so 1k l  . 
x

h  and h  can be decided by 

maximizing the information entropy  i h
H x x


 and 

 ,
i h

H x x y


,respectively.  

After the calculation, significance level test should be 
conducted to validate the causality. By creating the new time 

series  ,
s new new

N X Y  [24] and calculating the transfer 

entropy of the new time series  1,
new new

i

i y x s
T i N


   , the 

significance level is formulated based on the 3 rule: 
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where 


  and 


  are the means and variance of 
i

 , 

respectively. If 
y x

T


 is larger than s


, then y is the cause of x. 

B. Causal network modeling based on process knowledge and 

the modified transfer entropy 

The method of transfer entropy must meet the assumption 
that the process is static Markov process, that is to say, the 
current state at time t is decided by the states at time t-1 or t-k 
with certain k. The process dynamics should keep steady in an 
enough long time. However, this assumption is hard to meet. 
Therefore, only based on the data-driven transfer entropy, the 
results are not accurate. By combining superficial process 
knowledge with our proposed modified transfer entropy, the 
results would be credible. 

In a large-scale process, the whole system is composed of 
multiple sub-systems. Each sub-system represents a specific 
unit, in which there are more than one process variables. 
Through process division based on superficial process 
knowledge, we can firstly model each of the sub-system using 
modified transfer entropy, and then the whole causal model can 
be established by combining these sub causal models. In 
division, all the process variables will be allocated into different 
sub-systems. The variables in each sub-system consist in the 
variables belonging to this sub-system, the inflow variables, the 
outflow variables and the variables belonging to its adjacent 
sub-system which have influence on it. After division, the 
variables should be processed according to the superficial 
process knowledge. The rules are listed as follows: 
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Start

Divide the whole system 
into U sub-systems.

Determine the variables in each sub-system

Calculate the transfer entropy among variables 
in each sub-system; create the causal matrix

Validate and revise the causal matrix using 
process knowledge;

Establish the sub causal graph

Divide variables into 
different levels using 
process knowledge

Connect the sub causal graphs into one 

End
 

Figure 1 The flow chart of causal network modeling based on 
process knowledge and modified transfer entropy 

(1) According to the inflow and outflow relationship, the 
inflow variables are defined as the root variables, and the 
outflow variables are defined as the leaf variables. 

(2) Determine the related variables between adjacent 
sub-systems, such as the variables with same attribute or 
variables with obvious causality. 

(3) Analyze the time order of each sub-system according to 
the process flow chart. 

(4) Based on the time order, divided the related variable into 
high level and low level. 

Using these rules, the variables are now endowed with the 
characteristics of input, output and time order. From the 
perspective of information flow, the input variables are the 
causes and the output variables are the effects; from the 
perspective of time order, the cause precedes effect. These 
findings from process knowledge can validate and revise the 
results of modified transfer entropy. Besides, system division 
largely decreases the computation complexity. The flow chart 
for causal network modeling based on process knowledge and 
modified transfer entropy is shown in Figure 1. 

IV. Case study 

This section provides the test of our proposed causal 
network modeling in two case studies, stochastic process and 
TE process, to verify its superiority and efficiency. 

A. Stochastic process 

The stochastic process is denoted by the formula (9) 
including both linear relationship and nonlinear relationship. 
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where
k

X ,
k

Y  and
k

Z are three random variables. 

 2
0,1

k
X  .

k
Y  is nonlinearly related with 

k
X and 

k
Z . 

k
Z  is linearly related with 

k
X . 

1k
v  and 

2 k
v are white noise. 

Calculate the values of  transfer entropy among these three 

variables according to formula (6) and the significance level 

according to formula (8). The results are shown in Table1. 

Table 1 The values of transfer entropy and the correponding significan levels 

 k
X  

k
Y  

k
Z  

k
X  N/A 0.4184(0.4293) 0.2037(0.2905) 

k
Y  1.2558(0.4922) N/A 0.3225(0.2799) 

k
Z  0.7986(0.3975) 0.3059(0.4330) N/A 

The value outside the bracket means the transfer entropy 
from the variable in the column to that in the row, and the value 
inside the bracket means the corresponding significance level. 
According to Table 1, the causality among these three variables 

is shown in Figure 2. It can be seen that 
k

X  influences 
k

Z  , 

and 
k

X and
k

Z influence
k

Y . The causality shown in Figure 2 

is consistent with that in formula (8). It proves that our proposed 
causal network modeling method is accurate and efficient. 

X

Z Y
 

Figure 2 The causal network of stochastic process 

B. TE process 

Proposed by Downs and Vogel in 1993, Tennessee Eastman 
process is a simulation model of a real chemical process [25]. 
This model consists of five main units: Reactor, Condenser, 
Separator, Stripper and Compressor. The flow chart of TE 
process is shown in Figure 3. TE process contains 12 
manipulated variables, 22 continuous process measurements, 
and 19 composition measurements. In our work, 22 continuous 
process measurements are chosen to model (see Table 2). The 
number of samples is 200 and the sampling time is 1.8s. 

A

N

A

L

Y

Z

E

R

Vapor/

Liq-

Separa

tor

A

N

A

L

Y

Z

E

R

A

N

A

L

Y

Z

E

R

C

E
L8

F6

D

A

F1 FC3

Reactor

T9

T21

P13

Purge

F10

1
9

T18

FC9 F19

Product

LC8

F17

L15

TC

10

Condenser

T22

FC

11

J20

2

3

4

6

7

12

13

8

5

10

11

F14LC7

T11

L12

Compressor

SC

XA

XB

XC

XD

XE

XF

XG

XH

XD

XE

XF

XG

XH

XA

XB

XC

XD

XE

Cooling Water

CWS

Stm

XC

13

CWR

XC

20

TC

16

XC

19

F5

Cond
TC

18

Stripper

P7

PHL

6

XF

XC

14
F2 FC1

XC

15
F3 FC2

F4 FC4
LC

17

FC5

P16

FC6

Figure 3 Flow chart of TE process 

According to the flow chart, TE process can be divided into 

five sub units. Let  1 2 3 4 5
= , , , ,U u u u u u represent the whole 

TE process. The variables in each sub unit are listed as follows: 
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Reactor   1 1 2 3 5 6 7 8 9 21
= , , , , , , , ,u F F F F F P L T T   

Condenser  2 9 22
= ,u T T   

Separator  3 7 8 9 11 12 13 14 22
= , , , , , , ,u P L T T L P F T   

Stripper  4 4 11 12 13 14 15 16 17 18 19
= , , , , , , , , ,u F T L P F L P F T F   

Compressor  5 5 10 11 12 13 20
= , , , , ,u F F T L P J . 

Table 2 The 22  continuous process measurements 

Variable 
Number 

Variable 
Description 

Variable 
Number 

Variable 
Description 

F1 A feed L12 Separator level 

F2 D feed P13 Separator pressure 

F3 E feed F14 Separator underflow 

F4 A and C feed L15 Stripper level 

F5 Recycle flow P16 Stripper pressure 

F6 Reactor feed rate F17 Stripper underflow 

P7 Reactor pressure T18 
Stripper 

temperature 

L8 Reactor level F19 Stripper steam flow 

T9 Reactor temperature J20 Compressor work 

F10 Purge rate T21 
Reactor ooling 

water outlet T 

T11 
Separator 

temperature 
T22 

Condenser cooling 

water outlet T 

 

After the division, the transfer entropy between any two 

variables in each sub unit should be calculated. The parameters 

x
h  and h  should be determined firstly. Taking variables 

5
F  

and 
6

F  in 
1

u  for an example, based on formula (7), the trend 

of the transfer entropy from 
5

F  to itself with different interval 

is shown in Figure 4. 

 

Figure 4 The transfer entropy of variable F5 to itself 

When 6
x

h  , 
5( ) 5( )

( )
xi h i

H F F


 reaches the maximum 

value. So 
x

h  is set as 6. Then calculate the transfer entropy 

 6 5
T F F  based on the formula (6). The trend with different 

h  is shown in Figure 5. 

When 9h  ,  6 5
T F F reaches the maximum. So h  is 

set as 9. In the same way, the transfer entropy between any two 

variables in 
1

u  can be calculated. The causality between them 

can be measured using formula (4) and determined by 

comparing with its corresponding significance level. If 
y x

T


 is 

larger than s


 , y is the cause of x; otherwise, there is no 

causality form y to x. The causal matrix about 
1

u is shown in 

Table 3. ‘1’ denotes that the variable at the column is the cause 

of the variable at the row. ‘0’ denotes that the variable at the 

column is not the cause of the variable at the row. 

 

Figure 5 The transfer entropy from F5 to F6 

Afterwards, the process knowledge is used to validate and 

revise the causal matrix. For sub unit
1

u , the inflow variables 

are 
1 2 3 5 6

{ , , , , }F F F F F . They are regarded as the root variables. 

The direction of influence should be from 
1 2 3 5 6

{ , , , , }F F F F F  

to 
7 8 9 21

{ , , , }P L T T . Besides, the flow rate of feed A, D and E 

are independent. Based on these process knowledge, the 

optimized causal matrix of 
1

u is shown in Table 4. The casual 

network of 
1

u is shown in Figure 6. 

Table 3 The causal matrix of 
1

u  

Variable 

number 1
F  

2
F  

3
F  

5
F  

6
F  

7
P  

8
L  

9
T  

2 1
T  

1
F  0 1 1 1 0 1 1 1 1 

 0 0 1 1 0 0 0 1 0 

 0 0 0 1 0 0 0 1 1 

 0 0 0 0 0 0 0 0 0 

 1 1 1 1 0 1 1 1 1 

 0 1 1 1 0 0 1 1 0 

 0 1 1 1 0 0 0 1 0 

 0 0 0 1 0 0 0 0 0 

 0 1 0 1 0 1 1 1 0 

F1

F6 F5

F3

F2

P7

L8

T9

T21

 

Figure 6 The causal network of sub unit 
1

u  

2
F

3
F

5
F

6
F

7
P

8
L

9
T

2 1
T
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Table 4 The optimized causal matrix of 
1

u  

Variable 
number 1

F  
2

F  
3

F  
5

F  
6

F  
7

P  
8

L  
9

T  
2 1

T  

1
F  0 0 0 1 0 0 0 0 0 

2
F  0 0 0 1 0 0 0 0 0 

3
F  0 0 0 1 0 0 0 0 0 

5
F  0 0 0 0 0 0 0 0 0 

6
F  1 1 1 1 0 0 0 0 0 

7
P  0 1 1 1 0 0 1 1 0 

8
L  0 1 1 1 0 0 0 1 0 

9
T  0 0 0 1 0 0 0 0 0 

2 1
T  0 1 0 1 0 1 1 1 0 

 

 

Compressor

Stripper

Separator

Condenser

Reactor

F1

F6

F5 F3F2

P7L8T9T21

T22

T11 L12 P13F14

F19L15 P16F17T18

F4

F19

F10

J20

 

Figure 7 The causal network of TE process 

 

Accordingly, the causal networks of the other four sub units 

are created. Combining these sub causal networks, the whole 

causal model of TE process can be established, see as Figure 7. 

Compared with the traditional transfer entropy method, our 

proposed modified algorithm could find some causality which 

are hard to be captured by the traditional algorithm. That’s 

because in our proposed algorithm, the prediction horizon
x

h is 

introduced to fully consider the information transfer between 

variable itself. The comparison is shown in Table 5. Besides, 

the sub-system division based on process knowledge greatly 

decreases the computation complexity. 

 

Table 5 The comparison between proposed algorithm and traditional transfer 
entropy 

Causality Traditional  Proposed 

1 6
F F  No Yes 

2 6
F F  No Yes 

3 6
F F  No Yes 

5 6
F F

 No Yes 

6 8
F L  No No 

9 21
T T  No Yes 

14 15
F L  No Yes 

17 15
F L  No No 

19 18
F T

 No Yes 

V. Conclusions 

A new kind of modified transfer entropy algorithm is 

proposed in this paper. The information transfer between 

variables themselves and different variables is fully taken into 

consideration by optimizing the prediction horizon. The 

discovering ability of causality is improved a lot. What’s more, 

the superficial process knowledge is utilized to divide the 

whole process into multiple sub systems, which facilitates the 

calculation of transfer entropy among variables and validates 

the results of data-driven methods. The case studies of a 

stochastic process and TE process confirm the feasibility and 

effectiveness of our proposed scheme for causal network 

modeling. 
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