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Abstract: Spectroscopic techniques such as near-infrared spectroscopy have gained wide applications in 

the last few decades. As a result, various soft sensors have been developed to predict sample properties 

from the sample’s spectroscopic readings. Because the readings at different wavelengths are highly 

correlated, it has been shown that variable selection could significantly improve a soft sensor’s prediction 

performance and reduce the model complexity. Currently, almost all variable selection methods focus on 

how to select the variables (i.e., wavelengths or wavelength segments) that are strongly correlated with the 

dependent variable to improve the prediction performance. Although many successful applications have 

been reported, such variable selection methods do have their limitations, such as high sensitivity to the 

choice of training data, and poorer performance when testing on new samples. This is because the variables 

that are removed from model building may contain useful information about the sample property. To 

address this limitation, we propose a statistics pattern analysis (SPA) based method. Instead of selecting 

certain wavelengths or wavelength segments, the SPA-based method considers the whole spectrum which 

is divided into segments, and extracts different features over each spectrum segment to build the soft sensor. 

Two case studies are presented to demonstrate the performance of the SPA-based soft sensor and compared 

with a full partial least squares (PLS) model, and a synergy interval PLS (SiPLS) model. 

Keywords: Soft sensor, Variable selection, Multivariate regression, Partial least squares, Statistics pattern 

analysis, NIR, UV/Vis, Chemometrics 
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1. INTRODUCTION 

In the last few decades, spectroscopic techniques such as near-

infrared (NIR) and UV/Vis spectroscopies have gained wide 

applications. Beyond their traditional applications in analytical 

chemistry, spectroscopic techniques are applied in many 

different fields, including biotechnological, pharmaceutical, 

petrochemical, and agricultural and food industries (Gendrin, 

2008; Karoui and De Baerdemaeker, 2007; Meher et al., 2006). 

This is mainly due to their advantages over other analytical 

techniques, such as non-invasive and limited pre-treatment 

requirement. In order to correlate the spectroscopic readings of 

a sample with its properties of interest, multivariate regression 

methods such as multiple linear regression (MLR), principal 

component regression (PCR) and partial least squares (PLS) 

are commonly used to build data-driven models, often called 

soft sensors. These soft sensors allow the prediction of the 

interested properties of a sample based on its spectroscopic 

reading, such as estimating the moisture content in wheat using 

its NIR spectrum or estimating the concentration of individual 

components in a mixture using its UV/Vis spectrum.  

Because the spectroscopic readings at different wavelengths 

are highly correlated, soft sensor development based on 

spectroscopic measurements is nontrivial.  In fact, highly 

correlated regressor variables is the challenge to most soft 

sensor applications. Although multivariate regression methods 

based on dimension reduction approaches such as PCR and 

PLS have inherent capability of handling large number of 

correlated variables, it has been shown that variable selection, 

when combined with multivariate regression, can significantly 

improve the soft sensor’s prediction performance, reduce the 

model complexity, as well as provide better insight into the 

nature of the process/system of interest (Wang et al., 2015) .  

The spectroscopic measurements at different wavelengths 

contain a lot of information about the sample, which is why 

soft sensors can be developed to relate the spectrum to the 

sample properties of interest. Obviously, measurements at 

some wavelengths are highly correlated with the sample 

properties while the others are not. In addition, different 

wavelengths could contain different level of noises. Therefore, 

the goal of variable selection for spectroscopic data is to 

identify the subset of wavelengths that show the highest 

correlations to the interested properties of a sample to produce 

better estimate for new samples. Another potential benefit of 

variable selection is to eliminate measurements at wavelengths 

containing significant noises for better accuracy and 

performance of the soft sensor models (Xiaobo et al., 2010) . 

Due to the benefits mentioned above, variable selection is 

viewed as a critical step in spectroscopic chemometrics model 

development and has drawn significant interest in the last few 

years. For example, Xiaobo et al. (2010) provided an excellent 

review of different variable selection methods for soft sensors 

using NIR data, and (Balabin and Smirnov, 2011)  compared 

17 different variable selection methods using a biodiesel 

dataset. Although variable selection, when done properly, 

often improves the model prediction performance, it does carry 

some limitations. As shown in our case studies presented in 

Section 3, variable selection can produce soft sensor models 

that are highly sensitive to the choice of training data, i.e., data 

used for model calibration. Due to the noises and unknown 

disturbances contained in the training data, the wavelengths 

selected to optimize the prediction performance based on the 
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training and validation data may be “tilted” to overfit or 

capture the noise or unknown disturbances contained in the 

training and validation data.  As a result, the model prediction 

performance may deteriorate significantly when model is 

extrapolated or applied to new samples. In fact, this limitation 

is not unique to spectroscopic chemometrics models, it is true 

to all data-driven soft sensor models, which is in essence a 

balance between model accuracy and robustness. To help 

address this limitation, we propose a new soft sensor approach 

by adapting the statistics pattern analysis (SPA) framework we 

developed for process monitoring. In the SPA-based soft 

sensor modelling approach, the whole sample spectrum is 

divided into segments, and different features of each spectrum 

segment, instead of the spectrum readings themselves, are 

utilized to build the soft sensor model. In this way, the 

information contained in the whole spectrum is utilized while 

the effect of noise is removed or reduced. In addition, the 

number of variables used for model building is significantly 

reduced. 

To demonstrate how the SPA based soft sensor approach could 

improve the model prediction accuracy and robustness, we 

compare its performance with synergy interval PLS (SiPLS), 

one of the most commonly used interval selection based 

methods (Norgaard et al., 2000; Silva and Wiebeck, 2017; 

Wang et al., 2012). The rest of the paper is organized as the 

following: Section 2 briefly reviews the SiPLS method and 

introduces the proposed SPA based soft sensor; Section 3 

presents two cases studies; Section 4 draws the conclusion, and 

discusses the limitations of the proposed approach.  

2. OVERVIEW OF INTERVAL SELECTION 

METHODS 

Interval selection methods are variable selection approaches 

that explicitly or implicitly define intervals of the spectrum 

data in order to maintain a continuous variable selection. In 

this work, we focus on interval selection methods over other 

variable selection methods for comparison, not only because 

of their better performance in the cases studies (Norgaard et 

al., 2000; Silva and Wiebeck, 2017) , but also due to their 

fundamental roots in molecular chemistry. It has been well 

recognized that the general features of molecular spectra are of 

continuous bands rather than discrete responses. Therefore, it 

is reasonable to expect that a variable selection algorithm 

operating on a molecular spectrum would select regions of the 

spectrum rather than discrete wavelengths. In addition, the 

measured sample spectra are usually not aligned, so choosing 

an interval, instead of individual wavelength, would provide 

better containment of relevant information. 

As an example, Fig. 1 plots the NIR spectra of a 

pharmaceutical tablet dataset (David W. Hopkins, 2003) . It 

can be seen that there are many clear absorption bands of the 

active pharmaceutical ingredient (API) from 600 to 1800 nm. 

It also shows that spectroscopic data usually contain large 

number of highly correlated spectral variables - because the 

general features of molecular spectra are of continuous bands, 

the neighbouring wavelengths of an absorption band are highly 

correlated to each other. Therefore, the wavelengths that are 

adjacent to each other offer similar information. This is why 

variable selection is highly desired for spectroscopic data. 

However, as shown in Fig. 1, the shape of different molecular 

spectra, i.e., the peaks corresponding to different molecular 

structures are different, which suggests that if only the peaks 

were chosen for model building, it may not capture sufficient 

information about the underlying molecular structure for 

accurate prediction. Last but not least, because noise and 

baseline drift are usually present in spectroscopic data, using 

an interval of wavelengths for model building could offer more 

robust prediction performance, without requiring extensive 

sample pre-processing. 

2.1 Interval PLS and synergy interval PLS 

Interval PLS (iPLS) method (Norgaard et al., 2000)  is the most 

straightforward example of interval selection method, where 

the whole spectrum is divided into non-overlapping sections 

(intervals), as shown in Fig. 1. Then a separate PLS model is 

developed for each section and the PLS model that offers the 

best prediction performance will determine the most 

informative wavelength range. The interval width is the major 

tuning parameter of iPLS model, together with the order of 

each PLS model. Synergy interval PLS (SiPLS) (Norgaard et 

al., 2000)  is an improved version of iPLS. Compared to iPLS 

where only a single interval is used for model building, SiPLS 

allows the combination of multiple intervals (2, 3 or 4) to be 

selected for model building. The tuning parameters for SiPLS 

include the width of the interval, the number of intervals to be 

combined and number of principal components (PCs) to retain. 

Because SiPLS is an improved version of iPLS, and provides 

improved performance over iPLS, in this work we only 

compare the performance of SiPLS with full PLS model and 

SPA-based method. The SiPLS algorithm used in this work 

was downloaded from www.models.life.ku.dk/iToolbox. 

2.2 SPA-based soft sensor 

It is a common belief that the spectrum peaks carry the most 

important information about the sample. However, even for 

the spectrum segments that do not contain obvious absorption 

peaks such as 750nm-1050nm in Fig. 1, they could contain 

important information about the sample. In order to retain as 

much information as possible from the sample spectra while 

significantly reduce the number of variables, as well as to 

remove/reduce the effect of measurement noise and based line 

drift, we propose the SPA-based soft sensor approach. 

SPA is a process monitoring framework that the authors 

developed previously (He and Wang, 2010; Wang and He, 

2010) , where the statistics of process variables, instead of the 

process variables themselves, are monitored to determine the 

process operation status. SPA offers many advantages such as 

effectively addressing process nonlinearity and non-

Gaussianity, non-synchronized batch trajectories, etc. Its 

effectiveness and performance have been demonstrated in 

multiple case studies (He and Wang, 2010; Wang and He, 

2010). 

In this work, we adapt SPA to help address the challenge in 

variable selection for soft sensor model development. As 
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shown in Fig. 1, in the SPA-based approach we first divide the 

whole spectrum into non-overlapping intervals, which is 

 similar to SiPLS; then different features of each spectrum 

interval, such as the mean, standard deviation, skewness, 

kurtosis, are used as regressors to build the soft sensor model. 

In this way, information from the whole spectrum will be 

utilized for model building, but with significantly reduced 

number of variables. The schematic diagram of the proposed 

SPA-based soft sensor approach is shown in Fig. 2.  

There are several benefits associated with the SPA soft sensor. 

First, it utilizes the information from the whole spectrum to 

build the soft sensor model, which provides better model 

robustness; second, by extracting features of the spectrum 

segment in each interval, which involves computing the 

average of certain functions of absorption at different 

wavelength, it can reduce the effect of noise and baseline drift; 

third, the number of features is significantly smaller than the 

number of readings of the spectrum, which makes model 

development, optimization and update much faster compared 

to SiPLS. 

3.  CASE STUDIES 

In this work, we use two case studies to examine the accuracy 

and robustness of the SPA-based soft sensors, and compare 

them with the full PLS model that utilize the whole spectrum, 

and SiPLS model. In the first case study, the soft sensor is 

developed to predict the individual cell concentration in a 

mixed culture using its UV/Vis spectrum. In the second case 

study, the soft sensor is developed to predict the API 

concentration in a pharmaceutical tablet. 

To provide a fair comparison, we optimized all modelling 

approaches, and conducted Monte Carlo simulations whenever 

applicable. For each case study, the entire dataset is divided 

into three subsets: calibration set used to build the model; 

validation set used to optimize the model performance by 

tuning model parameters; testing set used to test the 

performance of the optimized model. The tuning parameters 

for each modelling approaches are the following: for the full 

PLS model, it is the number of PCs retained by the model; for 

the SiPLS model, they the number of intervals to be combined, 

the width of each interval and the number of PCs; for the SPA-

based model, they are the width of each interval and the 

number of PCs. For the full PLS model and the SPA model, 

the number of PCs was determined by choosing PCs based on 

root mean squared error (RMSE) with 𝑅𝑆𝑀𝐸𝑛+1 𝑅𝑆𝑀𝐸⁄
𝑛

>

0.99 where n is the number of PCs. This criterion is essentially 

the same as the adjusted Wold’s R criteria except that 

predicted residual error sum of squares (PRESS) is replaced 

with RMSE (Svante Wold, 1978) . For SiPLS, the first local 

minimum RMSE was used to determine the number of PCs, 

which is the default in the downloaded algorithm. In this work, 

for the SPA model, we used the mean, standard deviation, 

skewness and kurtosis to build the model, without further 

selection. It should be noted that the features to be included in 

the SPA model plays an important role for SPA-based soft 

sensor (He and Wang, 2010; Wang and He, 2010) . However, 

as an initial attempt, in this work we did not optimize the 

features to be used.  

In this work, we use two indices to evaluate the performance 

of the different soft sensors: the mean prediction error (MPE) 

and the root mean squared error (RMSE), with their definitions 

listed below. 

Mean prediction error (MPE):   

𝑀𝑃𝐸 =
∑ (𝐴𝑐𝑡𝑢𝑎𝑙−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑖 𝑁

𝑖=1

𝑁
  (1) 

Root mean squared error (RMSE):  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑖

2 𝑁
𝑖=1   (2) 

Where N is number of predicted values 

3.1 Case study 1: Estimating individual biomass in mixed 

cultures 

Due to many advantages associated with mixed cultures, the 

application of mixed cultures in biotechnology has expanded 

rapidly in recent years. However, how to efficiently and 

accurately monitor the individual cell populations in a mixed 

culture remains a challenging problem. The current 

approaches on individual cell mass quantification, such as cell 

counting or measuring ribosomal 16S DNA are time 

consuming and not suited for online monitoring. To address 

this difficulty, recently we developed a fast and accurate ‘soft 

sensor’ approach for estimating individual cell concentrations 

 In mixed cultures (Stone et al., 2017) . The developed 

approach utilizes optical density scanning spectrum (UV-Vis) 

of a mixed culture sample measured by a spectrophotometer to 

 
Figure 1. NIR spectra of pharmaceutical tablets 

 

Fig. 2. Schematic of SPA based soft sensor model 
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estimate individual cell concentration through a PLS model. In 

Stone et al. (2017), the PLS soft sensor that utilized the whole 

spectrum without variable selection was shown to provide 

satisfactory performance, with significantly better precision 

and accuracy compared to cell counting method.  

In this case study, one dataset reported in Stone et al. (2017) is 

used for evaluating the prediction performances of soft sensors 

based on full PLS model, SiPLS model and SPA-based model. 

The dataset consists of optical density spectra of 47 samples of 

mixed E. coli and S. cerevisiae cultures with known individual 

cell mass composition. The UV/Vis spectra of all 47 samples 

are plotted in Fig. 3(a), which clearly shows that the 47 

samples can be divided into 6 groups. Such grouping is due to 

the experimental design. Within each group, the cell 

concentration of each individual strain changes in the opposite 

direction linearly, that is, the linearly increasing concentration 

of E. coli is paired with linearly decreasing concentrations of 

S. cerevisiae, while the total OD at 670nm is maintained at a 

fixed level for each group. Details on the experimental design 

and sample preparation can be found in Stone et al. (2017). 

When we apply PCA to analyse the dataset, such grouping can 

be clearly seen in the score plot, as shown in Fig. 3 (b), where 

the sample spectra are projected onto the 2-dimentional 

principal component subspace. To examine the robustness of 

different soft sensor models, we consider two different 

scenarios, denoted by A and B, where samples from the same 

group of the testing samples are included or not included in the 

model calibration respectively. 

3.1.1 Scenario A  

In this scenario, the whole dataset was randomly divide into 

calibration, validation and test subsets, with each containing 

20, 12 and 15 samples respectively. In addition, at least 2 

samples from each group were randomly selected to be 

included in the calibration subset. This is to ensure that the 

training dataset captures all the groups (variations) of the test 

data. To examine the robustness of each modelling approach 

with respect to the selection of calibration dataset, 100 Monte 

Carlo runs were conducted, and totally 1500 predictions (15 

samples by 100 runs) are pooled together to compute the 

performance indices. Fig. 4 compares the performance of the 

three soft sensors, where Fig. 4 (a) compares MPE while Fig. 

4(b) compares RMSE from three approaches. For this 

scenario, all three models offer satisfactory performance, with 

fairly small MPE and RMSE. Fig. 4 also shows that although 

both SiPLS and SPA perform better than full PLS on the 

validation set for both strain concentrations, only SPA shows 

improved performance on the testing set, while SiPLS shows 

worse performance on estimating the E. coli concentration. 

Due to limited space, only the estimation results from SPA for 

the testing set are shown in Fig. 5, which demonstrate the 

unbiased estimate from SPA.  

3.1.2 Scenario B  

In this scenario, the first two groups (17 samples) were used as 

the test set. The remaining four groups were divided into 

calibration and validation sets containing 20 and 10 samples 

respectively. In addition, at least 2 samples from each of the 

four groups were randomly selected to be included in the 

calibration subset. 100 Monte Carlo runs were conducted and 

totally 1700 predictions (17 samples by 100) were pooled 

together to compute performance indices. Fig. 6 compares the 

performance of the three soft sensor models for scenario B, 

which shows that when the testing data are from different 

groups than the training and validation data, model prediction 

performance deteriorates significantly for all three models. 

However, SPA shows the least deterioration and offers 

essentially unbiased estimates. In contrast, the full PLS model 

 
Fig 3(a): UV/Vis spectra of co-culture 
 

 
Fig 3(b): Score plot of spectra. 

 

Fig. 4(a). MPE comparison for scenario A. (V= Validation 

results, P=Prediction results)  

 

Fig. 4(b). RMSE comparison for scenario A. (V= 

Validation results, P=Prediction results)  
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and the SiPLS model show significant bias in estimating E. 

coli concentrations. This is confirmed by Fig. 7, which plots 

the estimated E. coli concentration from the three models.  

3.2 Case study II: API estimation using NIR of 

Pharmaceutical tablet 

The pharmaceutical dataset, which was downloaded from 

http://www.eigenvector.com/data/tablets/index.html, consists 

of NIR spectra of 654 pharmaceutical tablets, and was divided 

into three subsets: 154 samples in calibration, 40 samples in 

validation and 460 samples in testing.  

Fig. 8 compares the three modelling approaches on the 

pharmaceutical data sent, for both validation and prediction 

subsets. Again, although both SiPLS and SPA model showed 

improved performance over the full model on the validation 

subset, only SPA showed significantly improved performance 

on the testing subset. Table 1 lists the percentage improvement 

(if positive) or deterioration (if negative) with the full model 

as the reference. Table I shows that SPA model delivers 52.9% 

reduction in MPE and 16.2% reduction in RMSE, while SiPLS 

shows 64.6% and 26.3% deterioration, respectively. Fig. 9 

plots the predictions from the three models and compared with 

the measurements. The two vertical ovals highlights the 

segments where SPA predictions are significantly better than 

 
Fig. 5. SPA estimates for scenario A 

 

Fig. 6(a). MPE comparison for scenario B. (V= Validation 

results, P=Prediction results)  

 

Fig. 6(b). RMSE comparison for scenario B. (V= 

Validation results, P=Prediction results)  

 
Fig. 7 Estimate of E. coli concentration for scenario B 

(estimated values of SiPLS and SPA shifted for clarity) 

 

Fig. 8(a). Mean Error comparison for case study-II. 

 

Fig. 8(b) RMSE comparison for case study-II 

Table 1. Performance improvement by SiPLS and SPA 

 model MPE % imp RMSE % imp 

Valid. 

Full -1.42 0.0 3.13 0.0 

SiPLS 0.20 86.1 1.74 44.6 

SPA 0.56 61.0 1.90 39.3 

  

Pred. 

Full 0.59 0.0 5.18 0.0 

SiPLS 0.97 -64.6 6.55 -26.3 

SPA -0.28 52.9 4.34 16.2 
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the other two approaches. 

4. CONCLUSIONS 

Variable selection has been recognized as a critical step in soft 

sensor development, particularly for chemometrics models. 

Up to date many variable selection methods have been 

developed to improve soft sensor prediction performance.  

In this work, we present an SPA-based chemometrics soft 

sensor. Instead of selecting certain wavelengths or wavelength 

segments, the SPA-based method considers the whole 

spectrum which is divided into segments, and choose different 

features over each spectrum segment to build the soft sensor. 

In this way, it can not only significantly reduce the number of 

independent variables, but also utilize the information 

contained in the whole spectrum while reducing noises. Two 

case studies demonstrate the performance of the SPA based 

soft sensor approach.  When the model is extrapolated to test 

samples that are different from training data which is common 

in really applications, the SPA based approach demonstrates 

the most significant improvement over the full PLS model and 

the SiPLS model. 

Since this is our initial effort in expanding the SPA framework 

to soft sensor development, we have not examined the 

contribution of each feature to the soft sensor models. It should 

be noted that the choice of the features to be included in the 

soft senor would play a key role in soft sensor performance 

and will be investigated in future studies. 
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