
Exam process control. Dec. 2017

Problem 1 - Mixing process (30%)

Note that the three parts of this problem can be done independently.

Two mixing tanks are used to produce a diluted acid (q_2) from concentrated acid (q_A) and water $(q_{w1}$ and $q_{w2})$, (see figure). The main part of the dilution is done in tank 1, while tank 2 is used to fine tune the dilution to obtain the desired concentration $(q_{w1}$ is about $10x q_{w2}$).

- (a) Write a dynamic model for the process (two balances for each tank). You may need to introduce symbols (variables) in addition to the ones given on the figure. No linearization or Laplace is required.
- (b) Formulate the 2x3 transfer matrix G₁ for the first tank with q_A, q_{w1} and q₁ as independent variables (inputs or disturbances) and V₁ and c₁ as dependent variables (outputs). No numbers are required, just the form (first-order, integrating, etc.) and sign of the gain.
- (c) Now we consider control. The flow of dilute acid is set by the downstream process, so q_2 is a disturbance. Suggest a control structure on the flowsheet for each of the following two cases:
 - 1) Measurements are c_1 , c_2 and the two levels. Suggest a control structure with four feedback loops.
 - 2) Measurements are c_2 and the two levels. Suggest a control structure that makes q_{w2} return to its desired value at steady state.

Problem? Solution (preliminary)

Ub Dec. 2017

(a) we assume constant clensitive

Overall mass bollowers and comparant mars balances (acid) for the eno touchs then given

tank 1: 21 = q + qw - q1

(2) d(GU) = 9ACA - 9 w Cui - 91C1 [molacid (5]

Tank 2: d/2: 9, 29 w2-92 [mod (5]

(4) d((2/2) = q1(1+qw2(w2-q2(2 [md acid[s]

(6) Transfer matrix 61

 $V_{1} = \begin{pmatrix} \frac{1}{5} & \frac{1}{5} & -\frac{1}{5} \\ \frac{k_{A}}{25+1} & \frac{k_{WI}}{25+1} & 0 \end{pmatrix}$

T= The for = meridance time (could be derived by linearisty (2))

KA > 0 KWILO

(c) (1) Fuelback

2: disturbance for us

Fig. 1

Could interchange ic and cc, the largest flow should be used for level control to reduce interactions, so here we

have assumed 9 A 79 wi but is probably none likely. It is probably none likely. It is large!

2) No maximum of (1

- Also have the @ and (E) and be interchanged (took 1).

- The FC may alternatively be called VPC (value position of the position controller) as it results the position of the value for que to some middle position (say 50% open) - Comment on structure 1 (feedback): The satisfied for G needs to be decided. It could be rel by a FC(or VPC) similar to Fig. 2.