TKP4140 Process Control
 Department of Chemical Engineering NTNU
 Autumn 2020 - Solution Midterm Exam

8 October 2020

- Write your answers on a separate sheet of paper.
- Time: 95 minutes (14:10-15:45) $+\mathbf{5}$ extra minutes for scanning.
- Upload your answers via Blackboard not later than 15:50.

Problem 1 (25 points)

Given the transfer function

$$
g(s)=\frac{(-4 s+1) e^{-s}}{(2 s+1)^{2}(6 s+1)}
$$

the time constants are $\tau_{1}=6, \tau_{2}=2$ and $\tau_{3}=2$. The delay is $\theta_{0}=1$ and the gain $k=1$.
(a) The first-order model approximation is

$$
\frac{k e^{-\theta s}}{\tau s+1}
$$

where $\tau=\tau_{1}+\tau_{2} / 2=7, \theta=\theta_{0}+\tau_{2} / 2+\tau_{3}=8$ and $k=1$.
(b) Figure 1 shows the response of the original transfer function (in blue) and the approximation (in red).

Step Response

Figure 1: Response of $g(s)$ to a unitary step.
(c) The PI settings (using $\tau_{c}=\theta$) are

$$
K_{c}=\frac{1}{k} \frac{\tau}{\tau_{c}+\theta}=\frac{1}{1} \frac{7}{8+8}=0.44
$$

and

$$
\tau_{I}=\min \left(\tau, 4\left(\tau_{c}+\theta\right)\right)=\min (7,4(8+8))=7
$$

(d) τ_{c} should be increased to make the response slower.

Problem 2 (20 points)

TF	Poles	Zeros	SS gain	Initial gain	Initial slope	Conclusion
g_{1}	$p_{1}=-1 / 6 ; \quad p_{2}=-1 / 2$	$z_{1}=-1 / 26$	-0.2	0	-0.43	D
g_{2}	$p_{1}=-1 / 6 ; \quad p_{2}=-1 / 2$	$z_{1}=1 / 18$	-0.2	0	0.3	F
g_{3}	$p_{1}=-1 / 10$	none	0.8	0	0.08	A
g_{4}	$p_{1}=-1 / 10$	none	0.8	0	0	E
g_{5}	$p_{1}=-1 / 8 ; p_{2}=-1 / 2 ; p_{3}=-1 / 2$	$z_{1}=-1 / 10$	1	0	0	B
g_{6}	$p_{1}=-0.2+j 0.98 ; p_{2}=-0.2-j 0.98$	none	1	0	0	C

Table 1: Table for Problem 2; SS: steady state; TF: transfer function where $j=\sqrt{-1}$.

Problem 3 (25 points)

(a) Mass balance:

$$
\frac{d m}{d t}=w_{1}-w_{2} \quad[k g / s]
$$

since there is no reaction, we can write it on molar basis:

$$
\frac{d n}{d t}=F_{1}-F_{2}
$$

where

$$
F_{1}=C_{v} z \sqrt{P_{r}^{2}-P^{2}}
$$

and

$$
n=\frac{P V}{R T} ; \quad \frac{d n}{d t}=\frac{V}{R T} \frac{d P}{d t}
$$

(b) Steady-state:

$$
\begin{gathered}
\frac{d n}{d t}=0 ; \quad F_{1}=F_{2} \\
C_{v} z^{*} \sqrt{P_{r}^{2}-P^{* 2}}=F_{2} \\
2 \cdot 0.5 \sqrt{12^{2}-P^{* 2}}=2 \\
P^{*}=\sqrt{12^{2}-2^{2}}=11.83 \quad[\mathrm{bar}]
\end{gathered}
$$

(c) The nonlinear model is given by

$$
\frac{d P}{d t}=\frac{R T}{V}\left(F_{1}-F_{2}\right)=\frac{R T}{V}\left(C_{v} z \sqrt{P_{r}^{2}-P^{2}}-F_{2}\right)
$$

Using the notation $f=\frac{d P}{d t}$ we have the following linear approximation:

$$
\frac{d \Delta P}{d t}=\left.\frac{\partial f}{\partial z}\right|_{*} \Delta z+\left.\frac{\partial f}{\partial P}\right|_{*} \Delta P+\left.\frac{\partial f}{\partial F_{2}}\right|_{*} \Delta F_{2}
$$

where

$$
\begin{gathered}
\left.\frac{\partial f}{\partial z}\right|_{*}=\frac{R T}{V} C_{v} \sqrt{P_{r}^{2}-P^{* 2}}=99.77 \\
\left.\frac{\partial f}{\partial P}\right|_{*}=\frac{R T}{V} C_{v} z^{*} \frac{-2 P^{*}}{2 \sqrt{P_{r}^{2}-P^{* 2}}}=-147.56
\end{gathered}
$$

and

$$
\left.\frac{\partial f}{\partial F_{2}}\right|_{*}=-\frac{R T}{V}=-24.94
$$

The linearized model becomes

$$
\frac{d \Delta P}{d t}=99.77 \Delta z-147.56 \Delta P-24.94 \Delta F_{2}
$$

(d) Using the notation $P(s)=\mathcal{L}\{\Delta P\}, F_{2}(s)=\mathcal{L}\left\{\Delta F_{2}\right\}$, and $z(s)=\mathcal{L}\{\Delta z\}$ we may write

$$
s \cdot P(s)=99.77 z(s)-147.56 P(s)-24.94 F_{2}(s)
$$

Since we are only interested in the effect of $z(s)$ in $P(s)$ we can set $F_{2}(s)=0$ (this is valid due to the superposition property of linear systems). Solving the equation for $P(s)$ gives

$$
P(s)=\frac{99.77}{s+147.56} z(s)=\frac{0.68}{0.0068 s+1} z(s)
$$

Problem 4 (5 points)

Alternative	True or False
(a)	False
(b)	True
(c)	False
(d)	True
(e)	False

Problem 5 (25 points)
(a) The PID controller in cascade form is

$$
c(s)=K_{c}\left(\frac{\tau_{I} s+1}{\tau_{I} s}\right)\left(\tau_{D} s+1\right)
$$

(b) The desired response is

$$
T(s)=y / y_{s}=\frac{e^{-\theta s}}{\tau_{c} s+1}
$$

(c) The block diagram of the closed-loop system is

The closed-loop transfer function is given by

$$
T(s)=\frac{\text { direct }}{1+\text { loop }}=\frac{g c}{1+g c}
$$

(d) Solving for $c(s)$ we get

$$
c(s)=\frac{1}{g} \frac{1}{\left(\frac{1}{T}-1\right)}
$$

(e) Putting in the transfer functions we get

$$
\begin{aligned}
& c(s)=\frac{\left(\tau_{1} s+1\right)}{k e^{-\theta s}} \frac{1}{\frac{\tau_{c} s+1}{e^{-\theta s}}-1} \\
& c(s)=\frac{\left(\tau_{1} s+1\right)}{k\left(\tau_{c} s+1-e^{-\theta s}\right)}
\end{aligned}
$$

which can be seen as a Smith Predictor controller.
(f) The first-order Padé approximation (with a single pole and a RHP-zero) of a time delay is

$$
e^{-\theta s} \approx \frac{1-\frac{\theta}{2} s}{1+\frac{\theta}{2} s}
$$

(g) Inserting a first-order Padé approximation into the Smith Predictor controller we get

$$
\begin{aligned}
c(s) & =\frac{\left(\tau_{1} s+1\right)}{k\left(\tau_{c} s+1-\frac{1-\frac{\theta}{2} s}{1+\frac{\theta}{2} s}\right)} \\
& =\frac{(\tau s+1)\left(1+\frac{\theta}{2} s\right)}{k\left(\tau_{c}+\frac{\theta}{2} \tau_{c} s+\theta\right) s} \\
& =\frac{(\tau s+1)\left(1+\frac{\theta}{2} s\right)}{k\left(\tau_{c}+\theta\right)\left(\frac{\theta \tau_{c}}{2\left(\tau_{c}+\theta\right)} s+1\right) s}
\end{aligned}
$$

(h) Comparing with a series (cascade) PID controller with a derivative filter

$$
c(s)=K_{c}\left(\frac{\tau_{I} s+1}{\tau_{I} s}\right)\left(\frac{\tau_{D} s+1}{\tau_{F} s+1}\right)
$$

we obtain the following relations:

$$
\begin{gathered}
\tau_{I}=\tau \\
\tau_{D}=\frac{\theta}{2} \\
K_{c}=\frac{\tau}{k\left(\tau_{c}+\theta\right)} \\
\tau_{F}=\frac{\theta \tau_{c}}{2\left(\tau_{c}+\theta\right)}
\end{gathered}
$$

(i) The original SIMC-rule gives a PI controller for this process (with $\tau_{D}=0$) instead of a PID controller with a derivative filter.
Note the following:

- $\tau_{F}=0$ (no filter) for $\tau_{c}=0$
- $\tau_{F}=\frac{\theta}{4}$ for $\tau_{c}=\theta$
- $\tau_{F}=\frac{\theta}{2}$ (filter cancels D-action) for $\tau_{c}=\infty$

