TKP4140 Process Control Department of Chemical Engineering NTNU Autumn 2019 - Midterm Exam

11. October 2019

Student number: _____

- Write your student number on **every** page in the indicated space.
- Write your answers on the enclosed pages.
- Use the last page for details if you have too little space.
- Do not separate the enclosed pages.
- Time: 90 minutes

Problem 1: System analysis (16 points)

(a) Calculate the poles and zeros for $g_1(s)$ and $g_2(s)$. i. $g_1(s) = 3 - \frac{1}{5s+1}$

ii. $g_2(s) = 3 - \frac{4}{5s+1}$

- 3.6
 3.4

 3.2
 3.8

 2.8
 3.8

 2.6
 3.4

 2.7
 3.8

 1.8
 1.6

 1.4
 1.4

 0.8
 0

 0.2
 0

 0.4
 0.2

 0.4
 0.2

 0.4
 0.2

 0.4
 0.2

 0.4
 0.2

 0.4
 0.2

 0.4
 0.2

 0.4
 0.2

 0.4
 0.2

 0.4
 0.2

 0.4
 0.2

 0.4
 0.2

 0.4
 0.2

 0.4
 0.4

 0.5
 0.4

 0.6
 0.4

 0.7
 0.4

 0.8
 0.4

 0.1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 12
 24
 25
 26
 27
 28
 29
 30

 Time
- (b) Sketch the step responses for $g_1(s)$ and $g_2(s)$ for a unit step (u(t) = 1) given at time t = 2 in Fig. 1

Figure 1: Step responses for $g_1(s)$ and $g_2(s)$

Problem 2: Transfer function responses (16 points)

Given the transfer functions

$$g_{1} = k_{1}$$

$$g_{2} = k_{2}e^{-\theta s}$$

$$g_{3} = \frac{k_{3}}{\tau_{3}s + 1}$$

$$g_{4} = \frac{T_{4}s + 1}{\tau_{4}s + 1}$$

And given the responses for a unit step (u(t) = 1) given at time t = 2 shown in Fig. 2

Figure 2: Step responses

(a) Match function g_1, g_2, g_3, g_4 with functions A, B, C, D.

A = B = C = D =

(b) Find the missing parameters for g_1, g_2, g_3, g_4 . Comment your choice.

$$g_1 = \qquad \qquad g_2 = \qquad \qquad g_3 = \qquad \qquad g_4 =$$

Problem 3: Block Diagrams (16 points)

Given the block diagram from Fig. 3

Figure 3: Block diagram

(a) Find the closed loop transfer function K(s) from e to v. (Note that this is positive feedback.)

(b) What can you say about K(s)?

Problem 4: Controller design (16 points)

(a) What is the transfer function for a PI-controller?

C(s) =

(b) Design a SIMC-controller for

$$g(s) = k \frac{-\theta s + 1}{\tau s + 1}$$

(c) What SIMC-controller do you get for g(s) if $\tau = 0$?

Problem 5: Modelling and linearization. (36 points)

Consider the mixing process shown in Fig. 4, where stream F_1 with temperature T_1 is mixed with stream F_2 with temperature T_2 to produce stream $F [\text{kg s}^{-1}]$ with temperature $T [^{\circ}\text{C}]$. We assume constant mass $m, c_p \approx c_V$ (liquid) and constant and equal c_p .

The nominal operating conditions are:

 $F_1^* = 0.5 \,\mathrm{kg}\,\mathrm{s}^{-1} \qquad F_2^* = 1.5 \,\mathrm{kg}\,\mathrm{s}^{-1} \qquad T_1^* = 80\,^\circ\mathrm{C} \qquad T_2^* = 20\,^\circ\mathrm{C} \qquad m = 1 \,\mathrm{kg}$

The control objective is to keep the outlet flow at setpoint $(F = F^{sp})$ and the outlet temperature at setpoint $T = T^{sp}$.

Figure 4: Mixing process (shower)

(a) Derive the mass balance (note that m is constant).

(b) Derive the energy balance in temperature form $(\frac{dT}{dt} = ...)$.

(c) Find the steady-state values for F and T.

(d) Introduce deviation variables and linearize the two balances.

(e) Let
$$F(s) = g_{11}(s)F_1(s) + g_{12}(s)F_2(s)$$
$$T(s) = g_{21}(s)F_1(s) + g_{22}(s)F_2(s) + g_{d1}(s)T_1(s) + g_{d2}(s)T_2(s)$$

What are g_{11} , g_{12} , g_{21} , g_{22} , g_{d1} and g_{d2} ?

(f) Suggest a control structure based on single loop controllers, that is suggest where to place $\stackrel{\text{(TC)}}{=}$ and $\stackrel{\text{(FC)}}{=}$ in Fig. 4. Comment on why you made this choice.

Extra space

Please indicate clearly to which problem the solution belongs.