TKP4140 Process control — Midterm Exam

12. October 2017

Student number:

- Write your student number on **every** page in the indicated space.
- Write your student answers on the enclosed pages.
- Use the last two pages for details if you have too little space.
- Do not separate the enclosed pages.

1. (30 points) Consider a tank with one inflow and one outflow, as given in Figure 1. Assume constant density, $\rho = const$.

Figure 1: Tank system with volume V = Ah

(a) Formulate the dynamic mass balance and write it in the form $\frac{dh}{dt} = \dots$

(b) What are the steady state values of h(t) and Q(t)?

(c) Linearize the model and introduce deviation variables.

(d) Take the Laplace transform and derive the transfer function g(s):

$$h(s) = g(s)Q_0(s)$$

(e) What is the value of the steady state gain and the time constant in g(s)?

(f) Fill in the corresponding transfer functions in the block diagram from Figure 2.

Figure 2: Block Diagram Tank System

(g) Does the block diagram from Figure 2 correspond to an open loop or a closed loop system?

2. (10 points) Given the first-order transfer function

$$g(s) = \frac{2e^{-7s}}{5s+1} \tag{1}$$

and y(s) = g(s)u(s).

Consider a step change in the input:

$$u(t) = \begin{cases} 0 & \text{for } t < 3\\ 5 & \text{for } t \ge 3 \end{cases}$$
(2)

Use the template in Fig.3 to sketch u(t) and the resulting y(t). Indicate the time constant, delay, and steady state value in your sketch.

Figure 3: Step Response

3. (20 points) Consider the system in Figure 4.

Figure 4: Block diagram

(a) Find the closed loop transfer function T(s) from $y_s(s)$ to y(s). Use symbols $(c(s), g(s), g_m(s))$.

(b) Find the closed loop transfer function Q(s) from $y_s(s)$ to u(s). Use symbols $(c(s), g(s), g_m(s))$.

(c) Find T(s) when:
$$g(s) = \frac{3}{5s+1}$$
 $g_m(s) = \frac{-s+1}{s+1}$ $c(s) = 1$

- (d) What is the steady state gain when there is a unit step in y_s ?
- (e) Calculate the damping factor and the time constant of T(s). Hint: the denominator in the second order transfer function is $\tau^2 s^2 + 2\tau \zeta s + 1$.
- (f) Does the system oscillate?

Midterm Exam TKP4140

Student number: .

4. (20 points) Given

$$g_{1} = \frac{2.5}{(6s+1)}$$

$$g_{2} = \frac{2.5(s+0.8)}{(6s+1)^{2}}$$

$$g_{3} = \frac{2.5}{(9s^{2}+3s+1)}$$

$$g_{4} = \frac{2(-4s+1)}{(6s+1)^{2}}$$

$$g_{5} = \frac{2e^{-4s}}{(6s+1)^{2}}$$

$$g_{6} = \frac{2.5}{(6s+1)^{2}}$$

Fill in the missing values in Table 1. In the case that the results in the table do not give a unique answer, comment on your choice.

Hints:

Initial slope of response to unit step input: $\lim_{t\to 0} y'(t) = \lim_{s\to\infty} sg(s)$

Step response y(t) for u(t)=1

Figure 5: Step responses

Student number:

TF	Poles	Zeros	SS gain	Initial gain	Initial slope	Conclusion
g_1						
g_2						
g_3						
g_4						
g_5						
g_6						

Table 1: Problem 4; SS: steady state; TF: transfer function

Student number: ____

- 5. (20 points) (a) SIMC tuning rules.
 - i. Write the SIMC PI tuning rules for a first-order plus delay process. g(s) =

ii. Write the SIMC tuning rules for cascade PID for a second-order plus delay process.

$$g(s) =$$
 $K_c = au_I = au_D =$

(b) By modelling and linearization, you have derived the following process transfer function

$$g(s) = \frac{3(-1.5s+1)e^{-0.5s}}{(25s+1)(3s+1)(0.8s+1)}$$
(3)

- i. Write the first-order plus delay approximation $g_1(s)$ using the half rule.
- ii. Write the second-order plus delay approximation $g_2(s)$ using the half rule.
- iii. Based on the approximations of $g_1(s)$ and $g_2(s)$ give the SIMC PI and PID settings. Use the standard choice $\tau_c = \theta$, where θ is the effective delay.
- iv. Would you recommend a PI or a PID controller? Explain briefly.
- (c) What would the SIMC PI tunings be for the system in Problem 3 (given Figure 4 with the transfer function from 3(c))?

Extra space if needed

Please indicate clearly which problem the solution belongs to.

Extra space if needed

Please indicate clearly which problem the solution belongs to.