Process control TKP4140 - Midterm Exam - Proposed Solution

October 2016

- Write your student number on every page.
- Write your answers in the designated spaces.
- Do not separate the sheets.
- If you need extra space, use the extra pages in the end.

Problem 1

1. (7 points) The transfer function $g(s)$ is a first order transfer function with time delay and the output is $y(s)=g(s) u(s)$. The step response $y(t)$ is plotted in Figure 1, and:

$$
u(t)= \begin{cases}0 & \text { for } t<5 \\ 2 & \text { for } t \geq 5\end{cases}
$$

(a) Sketch $u(t)$ in Figure 1 .
(b) Indicate the time delay (θ), time constant (τ), and steady state value $\left(y_{\infty}\right)$ in Figure 1.
(c) Write down θ, τ, k, and $g(s)$.
$\theta=5 s$
$\tau=15 s$
$k=\frac{\Delta y_{\infty}}{\Delta u}=\frac{3}{2}=1.5$
$g(s)=\frac{1.5 e^{-5 s}}{15 s+1}$

Figure 1: First order transfer function.

Problem 2

2. (18 points) Consider a heated tank with perfectly controlled level as the one in Figure 2. Assume: constant density (ρ), constant heat capacity $\left(C_{p}\right)$, constant volume (V), perfect mixing.

Figure 2: Heated tank

Table 1: Parameters for the heated tank.

V	$=10000$	ℓ	$=10 \mathrm{~m}^{3}$
q	$=1.5$	$\mathrm{~m}^{3} / \mathrm{s}$	
ρ	$=1000$	$\mathrm{~kg} / \mathrm{m}^{3}$	
$C_{v} \approx C_{p}$	$=4200$	$\mathrm{~J} / \mathrm{kgK}$	

(a) Formulate the dynamic energy balance of the system and write it in the form $\frac{d T}{d t}=\ldots$.

$$
\rho V C_{p} \frac{d T}{d t}=\rho q C_{p}\left(T_{1}-T\right)+Q
$$

$$
\frac{d T}{d t}=\frac{q}{V}\left(T_{1}-T\right)+\frac{1}{\rho V C_{p}} Q \quad \rightarrow \text { The units are }[K / s]
$$

\rightarrow Note that $\frac{V}{q}$ is the residence time of the tank. If we write the residence time as τ the energy balance can be written as:

$$
\frac{d T}{d t}=\frac{1}{\tau}\left(T_{1}-T\right)+\frac{1}{\rho V C_{p}} Q
$$

(b) Linearize the model and introduce deviation variables.

$$
f=\frac{d T}{d t}
$$

$$
\frac{d T}{d t} \approx \frac{\partial f}{\partial T_{1}}\left(T_{1}-T_{1}^{*}\right)+\frac{\partial f}{\partial T}\left(T-T^{*}\right)+\frac{\partial f}{\partial Q}\left(Q-Q^{*}\right)+f^{*}
$$

$$
\frac{d T}{d t}-f^{*} \approx \frac{q}{V}\left(T_{1}-T_{1}^{*}\right)-\frac{q}{V}\left(T-T^{*}\right)+\frac{1}{\rho V C_{p}}\left(Q-Q^{*}\right)
$$

$$
\text { If: } \Delta T=T-T^{*} ; \quad \Delta T_{1}=T_{1}-T_{1}^{*} ; \quad \Delta Q=Q-Q^{*}
$$

$$
\frac{d \Delta T}{d t}=\frac{q}{V}\left(\Delta T_{1}-\Delta T\right)+\frac{1}{\rho V C_{p}} \Delta Q
$$

(c) Take the Laplace transform and derive the transfer functions $g_{1}(s)$ and $g_{2}(s)$:

$$
T(s)=g_{1} T_{1}(s)+g_{2}(s) Q(s)
$$

$$
g_{1}(s)=\frac{1}{\frac{V}{q} s+1}=\frac{1}{\tau_{1} s+1} \quad g_{2}(s)=\frac{\frac{1}{\rho C_{p q}}}{\frac{V}{q} s+1}=\frac{k_{2}}{\tau_{1} s+1}
$$

$$
s T(s)=\frac{q}{V}\left(T_{1}(s)-T(s)\right)+\frac{1}{\rho V C_{p}} Q(s)
$$

$$
\left(s+\frac{q}{V}\right) T(s)=\frac{q}{V} T_{1}(s)+\frac{1}{\rho V C_{p}} Q(s)
$$

$$
T(s)=\frac{\frac{q}{V}}{s+\frac{q}{V}} T_{1}(s)+\frac{1}{\rho V C_{p}\left(s+\frac{q}{V}\right)} Q(s)
$$

$$
T(s)=\frac{1}{\frac{V}{q} s+1} T_{1}(s)+\frac{\frac{1}{\rho C_{p} q}}{\frac{\rho \rho_{p} V}{\rho C_{p} q} s+1} Q(s)=\frac{1}{\tau_{1} s+1} T_{1}(s)+1+\frac{k_{2}}{\tau_{1} s+1} Q(s)
$$

(d) Considering the parameters in Table 1, what is the value of the steady state gain k_{1} and the time constant τ_{1} of $g_{1}(s)$? (write the units)
$k_{1}=1 \mathrm{~K} / \mathrm{K} \quad \tau_{1}=\frac{V}{q}=\frac{10 m^{3}}{1.5 m^{3} / \mathrm{s}}=\frac{20}{3} \mathrm{~s}=6.66 \mathrm{~s}$
(e) Considering the parameters in Table 1 , what is the value of the steady-state gain k_{2} of $g_{2}(s)$? (write the units)
$k_{2}=\frac{1}{\rho C_{p} q}=\frac{1}{\left(1000 \frac{k g}{m^{3}}\right)\left(4200 \frac{J}{k g K}\right)\left(1.5 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}\right)}=$
$\frac{1}{6.3 \times 10^{6}} \frac{K s}{J}=1.587 \times 10^{-7} \frac{K}{W}=1.587 \times 10^{-4} \frac{K}{k W}$
(f) Draw the block diagram for the (open loop) process.

Figure 3: Block diagram for the process. Left: option 1; Right: option 2

Problem 3

3. (30 points) Consider the following block diagram:

Figure 4: Closed loop block diagram

$$
\mathbf{y}=\mathbf{T}(\mathbf{s}) \mathbf{r}+\mathbf{M}(\mathbf{s}) \mathbf{d}+\mathbf{N}(\mathbf{s}) \mathbf{n}
$$

(a) Write the transfer functions $T(s), M(s)$ and $N(s)$. Use symbols only (c(s), g(s)).

$$
\begin{aligned}
& T(s)=\frac{c(s) g(s)}{1+c(s) g(s)} \\
& M(s)=\frac{g(s)}{1+c(s) g(s)} \\
& N(s)=\frac{-c(s) g(s)}{1+c(s) g(s)}
\end{aligned}
$$

(b1) Find $T(s)$ and $M(s)$ when: $g(s)=\frac{3}{4 s+1} \quad$ and $\quad c(s)=2$
Write the denominator in the form: $\tau s+1$

$$
T(s)=\frac{2\left(\frac{3}{4 s+1}\right)}{1+2\left(\frac{3}{4 s+1}\right)}=\frac{6}{4 s+7}=\frac{6 / 7}{\frac{4}{7} s+1}=\frac{0.857}{0.57 s+1}
$$

$$
M(s)=\frac{\frac{3}{4 s+1}}{1+2\left(\frac{3}{4 s+1}\right)}=\frac{3}{4 s+7}=\frac{3 / 7}{\frac{4}{7} s+1}=\frac{0.428}{0.57 s+1}
$$

(b2) Find the analytical expression for $y(t)$ when $r(t)$ is a unit step, $d(t)=0$, and $n(t)=0$

$$
y(t)=\frac{6}{7}\left(1-e^{\frac{-t}{4 / 7}}\right)=0.8571\left(1-e^{\frac{-t}{0.57}}\right)
$$

The response $y(s)$ is obtained by multiplying $T(s)$ by the unit step $u(s)=1 / s$. Then, $y(s)$ can be rearranged using partial fraction decomposition:
$y(s)=\frac{1}{s}\left(\frac{6 / 7}{4 / 7 s+1}\right)=\frac{A}{s}+\frac{B}{4 / 7 s+1}=\frac{6 / 7}{s}-\frac{24 / 49}{4 / 7 s+1}$

Then, we have to take the inverse Laplace of $y(s)$ to obtain $y(t)$:
$y(t)=\mathcal{L}^{-1}\{y(s)\}=\frac{6}{7}-\frac{24 / 49}{4 / 7} e^{\frac{-t}{4 / 7}}=\frac{6}{7}\left(1-e^{\frac{-t}{4 / 7}}\right)$
A simpler way is to take $6 / 7$ as constant and then use $\mathcal{L}^{-1}\left\{\frac{1}{s(\tau s+1)}\right\}=1-e^{-t / \tau}$
(c1) Find $T(s)$ when: $g(s)=\frac{3}{4 s+1} \quad$ and $\quad c(s)=0.5\left(1+\frac{1}{s}\right)$
\rightarrow Please note that this is not a well-tuned controller.
$T(s)=\frac{s+1}{\frac{8}{3} s^{2}+\frac{5}{3} s+1}=\frac{s+1}{2.66 s^{2}+1.66 s+1}$
This is obtained by substituting $g(s)$ and $c(s)$ in the answer of question (a):
$T(s)=\frac{c(s) g(s)}{1+c(s) g(s)}=\frac{\left(\frac{3}{4 s+1}\right) 0.5\left(1+\frac{1}{s}\right)}{1+\left(\frac{3}{4 s+1}\right) 0.5\left(1+\frac{1}{s}\right)}=\frac{1.5(s+1)}{4 s^{2}+2.5 s+1.5}=\frac{s+1}{2.66 s^{2}+1.66 s+1}$
(c2) Calculate the damping factor and the time constant of $\mathrm{T}(\mathrm{s})$.
Hint: the denominator in the second order transfer function is $\tau^{2} s^{2}+2 \tau \zeta s+1$
$\zeta=0.51 \quad \tau=\sqrt{8 / 3}=1.633$

From the previous answer we know that $\tau^{2}=8 / 3$, so we can calculate τ from there.

To calculate ζ, we know that:
$2 \tau \zeta=5 / 3 \approx 1.66$. Then:
$\zeta=\frac{1.66}{(2)(1.633)}=0.51$
(c3) Compute $y(0), y^{\prime}(0)$, and $y(\infty)$ for $\mathrm{T}(\mathrm{s})$ when a unit step $r(s)=1 / s$ is applied.
$y(0)=0$
$y^{\prime}(0)=0.3759$
$y(\infty)=1$

The response $y(s)$ is obtained by multiplying $T(s)$ by $r(s)$. In this case, the initial gain, initial slope and steady state gains are calculated as follows:

Initial gain:
$\lim _{t \rightarrow 0} y(t)=\lim _{s \rightarrow \infty} T(s)=\lim _{s \rightarrow \infty} \frac{(s+1) / s^{2}}{\left(2.66 s^{2}+1.66 s+1\right) / s^{2}}=0$
Initial slope:
$\lim _{t \rightarrow 0} y^{\prime}(t)=\lim _{s \rightarrow \infty} s T(s)=\lim _{s \rightarrow \infty} \frac{\left(s^{2}+s\right) / s^{2}}{\left(2.66 s^{2}+1.66 s+1\right) / s^{2}} \approx \frac{1}{2.66}=0.3759$
Steady state gain:
$\lim _{t \rightarrow \infty} y(t)=\lim _{s \rightarrow 0} T(s)=\lim _{s \rightarrow 0} \frac{s+1}{2.66 s^{2}+1.66 s+1}=1$
(c4) Sketch the response $y(t)$, when $r(t)$ is a unit step, $d=0$ and $n=0$. Hints:

- Consider the answers you gave in (c2) and (c3).
- Note that the period of oscillations is approximately $2 \pi \tau$
- The first peak is at $t \approx 4.7 \mathrm{~s}$

Figure 5: Step response

Problem 4

4. (15 points) Given the transfer function:

$$
\begin{equation*}
g(s)=\frac{(-5 s+1) e^{-3 s}}{(2 s+1)^{3}(7 s+1)} \tag{1}
\end{equation*}
$$

(a) Write the first order plus time delay approximation $g_{1}(s)$ using the half-rule.

$$
g_{1}(s)=\frac{e^{-13 s}}{8 s+1}
$$

$g_{1}(s)$ can be written as: $g_{1}(s)=\frac{(-5 s+1) e^{-3 s}}{(7 s+1)(2 s+1)(2 s+1)(2 s+1)} \quad$ Then:
$\theta \approx 3+5+2+2+2 / 2=13$
$\tau_{1}=7+2 / 2=8$
(b) Give the SIMC PI settings, using $\tau_{c}=\theta$, where θ is the effective delay.
$K_{c}=0.3077 \quad \tau_{I}=8$
$K_{c}=\frac{1}{k}\left(\frac{\tau_{1}}{\tau_{c}+\theta}\right)=\frac{1}{1}\left(\frac{8}{13+13}\right)=0.3077$
$\tau_{I}=\min \left\{\tau_{1}, 4\left(\tau_{c}+\theta\right)\right\}=\min \{8,4(13+13)\}=8$
(c) Write the second order plus time delay approximation $g_{2}(s)$ using the half-rule.
$g_{2}(s)=\frac{e^{-11 s}}{(7 s+1)(3 s+1)}$
$\theta=3+5+2+2 / 2=11$
$\tau_{2}=2+2 / 2=3$
(d) Give the SIMC PID settings (cascade PID), using $\tau_{c}=\theta$, where θ is the effective delay.
$K_{c}=0.318 \quad \tau_{I}=7 \quad \tau_{D}=3$
$K_{c}=\frac{1}{k}\left(\frac{\tau_{1}}{\tau_{c}+\theta}\right)=\frac{1}{1}\left(\frac{7}{11+11}\right)=0.318$
$\tau_{I}=\min \left\{\tau_{1}, 4\left(\tau_{c}+\theta\right)\right\}=\min \{7,4(11+11)\}=7$
$\tau_{D}=\tau_{2}$
(e) Would you recommend a PI or a PID controller? Explain briefly.

The second order model (and derivative action) should be used when $\tau_{2}>\theta$, meaning that it is a dominant second-order process. In this case, $\tau_{2}=3$ and $\theta=11$, so, it is not recommended to use a PID. \rightarrow Use PI controller.

Problem 5

5. (5 points) Given the transfer function:

$$
\begin{equation*}
g(s)=\frac{20 e^{-3 s}}{s(2 s+1)(s+1)} \tag{2}
\end{equation*}
$$

(a) Write the first order plus time delay approximation $g_{1}(s)$ using the half-rule.

$$
g_{1}(s)=\frac{20}{s} e^{-5 s}
$$

$\frac{1}{s} \approx \frac{1}{T s+1}$ with $T \rightarrow \infty$
So, for the time constant: $\infty+2 / 2=\infty$

For the time delay: $\theta=3+1+2 / 2=5$
(b) Give the SIMC PI settings. Use $\tau_{c}=\theta$, where θ is the effective delay.
$K c=1 / 200 \quad \tau_{I}=40$

We have an integrating process with $k^{\prime}=20$ and $\theta=5$

$$
\begin{aligned}
& K_{c}=\frac{1}{k^{\prime}}\left(\frac{1}{\tau_{c}+\theta}\right)=\frac{1}{20}\left(\frac{1}{5+5}\right)=\frac{1}{200} \\
& \tau_{I}=4\left(\tau_{c}+\theta\right)=4(5+5)=40
\end{aligned}
$$

Problem 6

6. (5 points) Indicate whether the following statements are true of false.

	True	False
The PID SIMC rule gives tunings for PID in ideal form.		X
Increasing the integral term τ_{I} in a PID controller increases the effect of integral action.	X	
After tuning a PI controller using the SIMC rules with $\tau_{c}=\theta$, you realized that the closed loop response is faster than what you would like it to be. In order to slow down the response, you should decrease τ_{c}.		X
A closed loop with P-control always has a steady-state offset of $\frac{1}{1+K_{c} K}$, where K_{c} is the controller gain and K is the steady state process gain.	X	
Windup is caused by the integral part of the PI controller.	X	

Problem 7

7. (20 points) Figure 6 depicts the responses of the following transfer functions to a step input:

$$
\begin{align*}
& g_{1}=\frac{1}{7 s+1}-\frac{1.1}{3 s+1} \tag{3}\\
& g_{2}=\frac{1}{3 s+1}-\frac{1.1}{7 s+1} \tag{4}\\
& g_{3}=\frac{(10 s+1)}{(7 s+1)(1.5 s+1)^{2}} \tag{5}\\
& g_{4}=\frac{1}{s^{2}+0.4 s+1} \tag{6}
\end{align*}
$$

Step Response

Figure 6: Step response of $g_{i}(s)$

Fill in the missing values in Table 2:

- Poles and zeros of $g_{i}(s)$
- Steady state gain (SS gain), initial gain and initial slope when a unit step input $u(s)=1 / s$ is applied at $t=0$.
- As conclusion, identify the step responses in Figure 6 ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D).

Hints:
Initial slope of response to unit step input: $\lim _{t \rightarrow 0} y^{\prime}(t)=\lim _{s \rightarrow \infty} s g(s)$
$j=\sqrt{-1}$

Table 2: Problem 7; SS: steady state; TF: transfer function

TF	Poles	Zeros	SS gain	Initial gain	Initial slope	Conclusion
g_{1}	$p_{1}=-1 / 3$ $p_{2}=-1 / 7$	$z_{1}=-1 / 47$	-0.1	0	-0.2238	C
g_{2}	$p_{1}=-1 / 3$ $p_{2}=-1 / 7$	$z_{1}=1 / 37$	-0.1	0	0.1762	A
g_{3}	$p_{1}=-1 / 7$ $p_{2}=p_{3}=-2 / 3$	$z_{1}=-1 / 10$	1	0	0	D
g_{4}	$p_{1,2}=-0.2 \pm 0.9798 j$	-		1	0	0
B						

Calculation of poles and zeros:

$\mathbf{g}_{\mathbf{1}}(\mathbf{s})=\frac{3 s+1-7.7 s-1.1}{(7 s+1)(3 s+1)}=\frac{-0.1(47 s+1)}{(7 s+1)(3 s+1)} \quad$ Then, the poles and zeros can be easily calculated.
$\mathbf{g}_{2}(\mathrm{~s})=\frac{7 s+1-3.3 s-1.1}{(7 s+1)(3 s+1)}=\frac{-0.1(-37 s+1)}{(7 s+1)(3 s+1)}$ Then, the poles and zeros can be easily calculated.
For $\mathbf{g}_{\mathbf{3}}(\mathbf{s})$ poles and zeros can be easily calculated.
For $\mathbf{g}_{4}(\mathbf{s})$ there are no zeros and the poles can be calculated by solving the quadratic equation:
$p_{1,2}=-0.4 \pm \frac{\sqrt{0.4^{2}-4(1)(1)}}{2}=-0.2 \pm \frac{\sqrt{-3.84}}{2}=-0.2 \pm 0.9798 j$

For the steady state gain, initial gain, and initial slope, we have to consider that the response to a unit step is $y(s)=g(s) u(s)$ where $u(s)=1 / s$

Calculation of the steady state gain:

Steady state gain of the response when a unit step is applied:

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{s \rightarrow 0} g(s)
$$

All the limits can be taken directly from the transfer functions as given.

Calculation of the initial gain:

Initial gain of the response when a unit step is applied:
$\lim _{t \rightarrow 0} y(t)=\lim _{s \rightarrow \infty} g(s)$

For $g_{1}(s): \lim _{t \rightarrow 0} y_{1}(t)=\lim _{s \rightarrow \infty} g_{1}(s)=\lim _{s \rightarrow \infty} \frac{(-4.7 s-0.1) / s^{2}}{\left(21 s^{2}+10 s+1\right) / s^{2}}=0$
The numerator becomes zero: $\lim _{s \rightarrow \infty}\left(-4.7 / s-0.1 / s^{2}\right)=0$
Similarly for $g_{2}(s)$ and $g_{4}(s)$, you divide by s^{2} so that the limit is defined when the limit is taken.

For $g_{3}(s): \lim _{t \rightarrow 0} y_{3}(t)=\lim _{s \rightarrow \infty} g_{3}(s)=\lim _{s \rightarrow \infty} \frac{(10 s+1) / s^{3}}{\left((7 s+1)(1.5 s+1)^{2}\right) / s^{3}}=0$

Calculation of the initial slope:

Initial slope of the response when a unit step is applied:
$\lim _{t \rightarrow 0} y^{\prime}(t)=\lim _{s \rightarrow \infty} s g(s)$

For $g_{1}(s): \lim _{t \rightarrow 0} y_{1}^{\prime}(t)=\lim _{s \rightarrow \infty} s g_{1}(s)=\lim _{s \rightarrow \infty} \frac{\left(-4.7 s^{2}-0.1 s\right) / s^{2}}{\left(21 s^{2}+10 s+1\right) / s^{2}} \approx \frac{-4.7}{21}=-0.2238$
For $g_{2}(s): \lim _{t \rightarrow 0} y_{2}^{\prime}(t)=\lim _{s \rightarrow \infty} s g_{2}(s)=\lim _{s \rightarrow \infty} \frac{\left(3.7 s^{2}-0.1 s\right) / s^{2}}{\left(21 s^{2}+10 s+1\right) / s^{2}} \approx \frac{3.7}{21}=0.1762$
For $g_{3}(s): \lim _{t \rightarrow 0} y_{3}^{\prime}(t)=\lim _{s \rightarrow \infty} s g_{3}(s)=\lim _{s \rightarrow \infty} \frac{\left(10 s^{2}+s\right) / s^{3}}{\left((7 s+1)(1.5 s+1)^{2}\right) / s^{3}}=0$
For $g_{4}(s): \lim _{t \rightarrow 0} y_{4}^{\prime}(t)=\lim _{s \rightarrow \infty} s g_{4}(s)=\lim _{s \rightarrow \infty} \frac{1 / s^{2}}{\left(s^{2}+0.4 s+1\right) / s^{2}}=0$

